
 

 

 

Models for Evaluating and Improving 

Architecture Competence 

Len Bass 

Paul Clements 

Rick Kazman 

Mark Klein 

 

March 2008  

TECHNICAL REPORT 

CMU/SEI-2008-TR-006 
ESC-TR-2008-006 

Software Architecture Technology Initiative 

Unlimited distribution subject to the copyright. 

 



 

This report was prepared for the 

SEI Administrative Agent 

ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2100 

The ideas and findings in this report should not be construed as an official DoD position. It is published in the 

interest of scientific and technical information exchange. 

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally 

funded research and development center sponsored by the U.S. Department of Defense. 

Copyright 2008 Carnegie Mellon University. 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF 

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED 

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 

COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and 

derivative works. 

External use. Requests for permission to reproduce this document or prepare derivative works of this document for 

external and commercial use should be addressed to the SEI Licensing Agent. 

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with 

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research 

and development center. The Government of the United States has a royalty-free government-purpose license to 

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, 

for government purposes pursuant to the copyright license under the clause at 252.227-7013. 

For information about purchasing paper copies of SEI reports, please visit the publications portion of our  website 

(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html


 

 SOFTWARE ENGINEERING INSTITUTE | i 

Table of Contents 

Acknowledgments vii 

Abstract ix 

1 Introduction 1 
1.1 Terminology and Definitions 2 
1.2 Models of Competence 7 
1.3 Organization of This Report 9 

2 The Duties, Skills, and Knowledge (DSK) Model 11 
2.1 What Are an Architect’s Duties, Skills, and Knowledge? 12 
2.2 Advantages and Challenges of the Approach 13 
2.3 Processing the Raw Data 15 
2.4 Duties 16 
2.5 Skills 17 
2.6 Knowledge 18 
2.7 Using the DSK Model to Assess and Improve the Architecture Competence  

of Individuals 21 
2.8 Duties, Skills, and Knowledge for a Software Architecture Organization 22 

3 The Human Performance Technology Model 25 
3.1 Using the Human Performance Technology Model to Measure and Improve Architecture 

Competence 27 

4 The Organizational Coordination Model 29 
4.1 Dependency 29 
4.2 The Coordination Capability of an Organization 30 
4.3 Measuring the Coordination Activities 31 
4.4 Relating Organizational Capability to Dependencies 32 

5 The Organizational Learning Model 33 
5.1 The Components of the Organizational Learning Framework 34 
5.2 Using the Organizational Learning Framework to Measure and Improve Architecture 

Competence 35 

6 Considering the Models Together 37 
6.1 How the Models Together Support Evaluation 37 
6.2 Principles Embodied by the Models 38 
6.3 Coverage Provided by the Models 39 

7 Building an Assessment Instrument 43 
7.1 Assessment Outcomes 43 
7.2 The Foundations and Structure of the Instrument 44 
7.3 Sample Questions 45 
7.4 Reflections on the Instrument Questions 47 

 

 



ii | CMU/SEI-2008-TR-006 

8 Summary 49 
8.1 Next Steps 49 
8.2 Conclusion 51 

Appendix A: Survey of Practicing Architects 53 

Appendix B: Complete List of Duties, Skills, and Knowledge 61 

Bibliography 69 

 



 

 SOFTWARE ENGINEERING INSTITUTE | iii 

List of Figures 

Figure 1: Teodorescu and Binder’s Components and Processes for Building a Competence Model 4 

Figure 2: Software Engineering Artifacts, Transformations, and Verifications 7 

Figure 3: Skills and Knowledge Support the Execution of Duties 12 

Figure 4: Architecture Job Accomplishments 27 

Figure 5: Gilbert’s Behavior Engineering Model 28 

Figure 6: Dependencies Between Modules with Coordination Between Development Teams 29 

Figure 7: Factors that Affect Coordination Capability of an Organization 31 

Figure 8: The Relationship Between Architecture Design Competence and  
Organizational Learning 33 

Figure 9: ―Acquiring Architects‖ in One Kind of Organization Interact with ―Producing Architects‖  
in  Another 50 

 



iv | CMU/SEI-2008-TR-006 



 

 SOFTWARE ENGINEERING INSTITUTE | v 

List of Tables 

Table 1: The Duties of a Software Architect 16 

Table 2: The Skills of a Software Architect 18 

Table 3: Body of Knowledge Needed by a Software Architect 20 

Table 4: The Knowledge Areas of a Software Architect 21 

Table 5: Priority Each Model Assigns to Observing Artifacts, Process, and Organization 40 

Table 6: Applicability of the Models to Individuals, Teams, and Organizations 40 

Table 7: Duties of a Software Architect 61 

Table 8: Skills of a Software Architect 65 

Table 9: Knowledge of a Software Architect 66 

 



vi | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | vii 

Acknowledgments 

Our thanks go to many people who have helped with this work:  

 Participants in the birds-of-a-feather session at the 2006 Working IFIP/IEEE Conference on 

Software Architecture (WICSA) laid the groundwork for the research, and expressed interest 

and encouragement.  

 Divya Devesh carried out the web searches to compile much of the material about courses 

and certificate programs that appear in the appendices. Prageti Verma, Shivani Reddy, and 

Divya Devesh carried out the research to capture an architect’s duties, skills, and knowledge. 

Prageti Verma summarized the duties submitted by visitors to the SEI Software Architecture 

website.  

 The IFIP working group WG2.10 on software architecture listened to our explanation of the 

approach and offered suggestions. Rich Hilliard was especially helpful. Mary Shaw provided 

comments and pointed us to the results of the education working session at WICSA. Philippe 

Kruchten provided many pointers, engaged in helpful discussions, and contributed to an earli-

er version of this report. 

 Tommi Mikkonen (University of Tampere) provided excellent clarifying comments. Joe 

Batman (SEI) graciously allowed us to use his piece on organizations and architecture. John 

Klein (Avaya) suggested new survey questions and new organizational practices (process im-

provement, measuring quality of past architectures). Poornachandra Sarang (ABCOM Infor-

mation Systems Pvt. Ltd., Mumbai, India), Prof. TV Prabhakar (IIT-Kanpur), and David 

Weiss (Avaya) all made insightful suggestions about the work. Hans van Vliet provided help-

ful comments about our questionnaire. Steve Miller (dean, School of Information Systems, 

Singapore Management University) participated in a fruitful discussion leading to a figure in 

this report that describes the different organizational roles and shows how architecture com-

petence is different in each  (Figure 9: ―Acquiring Architects‖ in One Kind of Organization 

Interact with ―Producing Architects‖ in Another). 

 Members of the SEI Software Architecture Technology Initiative listened to progress reports 

and provided feedback.   

 Joe Batman, Suzanne Garcia, Linda Northrop, and Mark Staples of the SEI provided in-

sightful reviews that helped us improve the report. 

 



viii | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | ix 

Abstract 

Software architecture competence is the ability of an individual or organization to acquire, use, 

and sustain the skills and knowledge necessary to carry out software architecture-centric practices. 

Previous work in architecture has concentrated on its technical aspects: methods and tools for 

creating, analyzing, and using architecture. However, a different perspective recognizes that these 

activities are carried out by people working in organizations, and those people and organizations 

can use assistance towards consistently producing high-quality architectures.  

This report lays out the basic concepts of software architecture competence and describes four 

models for explaining, measuring, and improving the architecture competence of an individual or 

a software-producing organization. The models are based on (1) the duties, skills, and knowledge 

required of a software architect or architecture organization, (2) human performance technology, 

an engineering approach applied to improving the competence of individuals, (3) organizational 

coordination, the study of how people and units in an organization share information, and (4) or-

ganizational learning, an approach to how organizations acquire, internalize, and utilize know-

ledge to improve their performance. The report also shows how the four models can be synergisti-

cally applied to produce an evaluation instrument to measure an organization’s architecture 

competence. 



x | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 1 

1 Introduction 

Software architecture has become recognized in recent years as an indispensable part of the de-

velopment process for high-quality, software-intensive systems. With a few notable exceptions, 

the field of software architecture has been primarily devoted to technical and technological as-

pects of architecture, including but not limited to 

 architecture-based development methodologies 

 architectural design solutions involving styles, patterns, tactics, and other cataloged solutions 

or solution fragments 

 evaluating, analyzing, or assessing a software architecture for suitability or fitness of purpose 

 capturing and communicating a software architecture using languages, notations, templates, 

and tools 

 modeling of systems based on their architectural descriptions 

 the relationship between software architecture and implementation—either taking the archi-

tecture to code or recovering the software architecture from a legacy code base 

 architecture-based technology platforms, infrastructures, layers, frameworks, and pre-

packaged components that currently dominate the open market, and the standards associated 

with them 

 the relationship between software architecture and testing 

These topics and others form the backbone of a formidable body of technical work [Shaw 2006]. 

However, none of them is focused on the software architects who work within organizations to 

create, evaluate, maintain, and promulgate software architectures. Only if people and organiza-

tions are equipped to effectively carry out software-architecture-centric practices will organiza-

tions routinely produce high-quality architectures that are aligned with their business goals. An 

organization’s ability to do this well cannot be understood simply through examination of past 

architectures and measurement of their deficiencies. The root causes of those deficiencies need to 

be understood. Therefore the goal of our competence work is this:  

We wish to be able to effectively measure the competence of software architects, software 

architect teams, and software-architecture-producing organizations and to prescribe effec-

tive ways in which competence can be improved. 

The purpose of this report is to identify human and organizational factors that are critical to 

achieving the full promise of software architecture. 



2 | CMU/SEI-2008-TR-006 

1.1 TERMINOLOGY AND DEFINITIONS 

Before delving into the factors that contribute to architecture competence, we will explore defini-

tions of competence and related terms, discuss their implications, and propose our definition of 

architecture competence. 

Architect, architecture: Throughout this report, architect and architecture should be taken to 

mean ―software architect‖ and ―software architecture,‖ respectively, unless otherwise qualified. 

As is usually the case, we expect that many of the concepts related to software architecture apply 

equally well to system architecture or enterprise architecture. However, the scope of this report is, 

for now, limited to software. 

Competence: There are several nontechnical definitions of competence; the following are  

typical: 

Competence: the quality of being competent; adequacy; possession of required skill, know-

ledge, qualification, or capacity [Webster 1996] 

Competent: having suitable or sufficient skill, knowledge, experience, etc., for some purpose; 

properly qualified [Random House 2006] 

 

Competent: Capable of performing an allotted or required function  

[American Heritage 2002] 

These definitions reveal a predisposition towards measuring qualities of the individual: skill, 

knowledge, qualification, experience, or capability. This contrasts sharply with the definition giv-

en by Gilbert: 

Competent people are those who can create valuable results without using excessively costly 

behavior [Gilbert 1996, p.17]. 

This definition scrupulously avoids measuring the individual and instead measures the result. Gil-

bert’s model of competence will be explored in Section 3. We will develop a precise definition of 

competence in architecture as we go along. For now, we simply want to call attention to the di-

chotomy between definitions of competence that target individual workers and definitions that 

target the results of their work. 

Organizational competence: Much of the literature in competence deals with competence of 

organizations rather than individuals. For example, Taatila deals explicitly with organizational 

competence in a comprehensive fashion. Taatila writes that organizational competence refers to  

an organization’s internal capability to reach stakeholder-specific situation-dependent 

goals, where the capability consists of the situation-specific combination of all of the possi-

ble individual-based, structure-based, and asset-based attributes directly manageable by an 

organization and available to the organization in the situation [Taatila 2004, p. 4]   



 

 SOFTWARE ENGINEERING INSTITUTE | 3 

Briefly, organizational competence measures those internal attributes that enable an organization 

to reach its targets. Taatila is quick to point out that organizational competence is fundamentally 

affected by the competence of individuals employed by that organization. Attributes that individ-

uals contribute to their organization include their 

 creativity 

 intelligence 

 knowledge and skills 

 behavioral traits (including such aspects as honesty and maturity) 

 motivation 

 commitment 

 communication capabilities 

Taatila identifies competence-related attributes of an organization, including 

 how roles are assigned to employees 

 guiding principles 

 defined organizational processes 

 organizational culture (including values, atmosphere, and practices) 

 organizational knowledge 

 managerial practices 

 organizational learning 

 information and information technology systems 

 work environment 

Finally, Taatila writes that the assets that an organization holds—for example, products and pro-

duction environments—affect its ability to meet its target goals.   

Teodorescu and Binder prescribe a way to build a competence model that can be used to measure 

and increase an organization’s progress towards achieving competence [Teodorescu 2004]. Their 

model is shown in Figure 1. Important inputs include the goals of the organization. Processes are 

built to identify and confirm the goals, conduct performance analyses, and so forth. Then remedial 

actions are planned and implemented as needed. 



4 | CMU/SEI-2008-TR-006 

 
 

Figure 1: Teodorescu and Binder’s Components and Processes for Building a Competence Model  

[Teodorescu 2004, p. 10]  

Competency: When studying competence, a related term often arises: namely, competency. For 

example, Woodruffe defines competency as follows: 

A competency is the set of behaviour patterns that the incumbent needs to bring to a position 

in order to perform its tasks and functions with competence” [Woodruffe 1993, p. 29]. 

Similarly, Michael Lewis writes that  

Organisational competencies are those combinations of organisational resource and process 

that together underpin sustainable competitive advantage for a specific firm competing in a 

particular product/service market [Lewis 2001, p. 190]. 

A competency can be a core competency for an organization, a concept about which the manage-

ment literature contains a wealth of information. For example, Prahalad and Hamel claim that a 

focus on core competencies distinguishes more successful from less successful companies:  

Core competence does not diminish with use. Unlike physical assets, which do deteriorate 

over time, competencies are enhanced as they are applied and shared. But competencies still 

need to be nurtured and protected; knowledge fades if it is not used. Competencies are the 

glue that binds existing businesses… Consider 3M’s competence with sticky tape. In dream-

ing businesses as diverse as “Post-it” notes, magnetic tape, photographic film, pressure-

sensitive tapes, and coated abrasives, the company has brought to bear widely shared com-

petencies in substrates, coatings, and adhesives and devised various ways to combine them. 



 

 SOFTWARE ENGINEERING INSTITUTE | 5 

Indeed, 3M has invested consistently in them. What seems to be an extremely diversified 

portfolio of businesses belies a few shared competencies [Hamel 1990, p. 82]. 

For a grand tour of the various meanings of competency to be found in the literature, as well as a 

summary of the term’s evolution over time, see Hoffman’s treatment [Hoffman 1999]. 

Overall, competency refers to an ability or a capability, usually in an organization, whereas com-

petence refers to how well a capability is exercised. The distinction is subtle, and not critical to 

this report. We will explore software architecture competency by articulating the specifics of the 

capability and how that capability can be carried out with competence by individuals and organi-

zations.  

Individual vs. organizational competence: We have been speaking of individual and organiza-

tional competence as though they were independent. There are cases where individual architects 

are prevented from producing high-quality architectures or from performing duties satisfactorily 

by the encompassing organization. For example, the organization may rush an architecture out of 

its creation stage and into coding before sufficient validation has been done. Is the individual who 

created that architecture competent (but the organization not competent) when the organization’s 

failure to perform its duties effectively leads to a failed architecture? Alternately, the most archi-

tecturally-invested organization will produce only failures if its architects are not competent. Sup-

pose an organization competently carries out its duties, such as adequately funding the architec-

ture stage of projects, insuring high-quality reviews, paying its architects well, facilitating 

information exchange among its architects, and so forth. If its architects do not perform their du-

ties competently, is the organization competent? Does the organization’s failure to hire and retain 

competent architects mean it is incompetent? 

Individual and organizational competencies are intertwined. Studying only one or the other will 

not do. This idea reinforces our position that simply examining completed architectures and mea-

suring their deficiencies will not do. We need to understand the root causes of those deficiencies. 

In fact, the competence of an organization is intertwined with the competence of external organi-

zations with which it interacts—suppliers, customers, regulators, and so forth.  An incompetent 

supplier can ruin a system just as surely as incompetent architects—if the organization fails to 

guard against it.  While this demonstrates that the web of competence is potentially unlimited, we 

have chosen for reasons of practicality to keep our scope focused on the competence of the indi-

vidual architect and his or her employing organization. 

Architecture competence: What do we mean by architecture competence? Summarizing the pre-

vious treatments of competence, we can take one of two tracks. Using the Gilbert sense of the 

term in which we measure the output rather than the qualifications of the actor, we can posit the 

following:  

A competent software architect is one who produces high-quality software architectures with 

acceptable cost. An organization competent in software architecture is one that consistently 

produces high-quality software architecture with acceptable cost. 



6 | CMU/SEI-2008-TR-006 

Taking the more conventional point of view, we can posit a definition of architecture competence 

in line with the first definition we cited, dealing with the ―possession of required skill, knowledge, 

qualification, or capacity.‖ Thus 

Architecture competence is the ability of an individual, team, or organization to effectively 

carry out the functions and activities necessary to produce architectures that are aligned 

with the developing organization’s business goals. 

The former concentrates on past results; the latter concentrates on current abilities. Both have 

their advantages and disadvantages. The first definition 

 fails to take into account the fact that successful architects do more than produce architec-

tures. Architects evaluate other architectures, mentor apprentices, work with management, 

communicate with stakeholders, consult with developers, are technological visionaries, and 

perform a host of other activities that we need to include under the umbrella of competence. 

These ancillary activities must be included because organizations expect them, as indicated 

by a large sample of position descriptions for software architects gathered as part of the re-

search for this work. If our research results in prescribing a path to competence that leads to 

an architect’s being regarded as deficient by an employer, it will be a disservice to the profes-

sion. It can be argued that all of these activities are geared towards producing high-quality ar-

chitectures in the future, and hence fall naturally into our definition. We simply must not be 

short sighted in what it means to ―produce‖ an architecture. 

 requires an architect to present results before his or her competence can be evaluated. A new-

ly appointed architect, by this definition, cannot have any competence at all! 

 assumes that an architect’s past performance is a good predictor of future performance, dis-

counting any factors in past organizational environments (possibly in a completely different 

organization) or technological environments (possibly using technology that is now obsolete) 

that might have enhanced or inhibited his or her ability to perform, or makes the assumption 

that the architect can easily adapt to new environments and demands 

 assumes that an architect’s past efforts are available and measurable 

On the other hand, the second definition 

 takes on faith the fact that present qualifications are good predictors of future performance  

 assumes that we know the right ―functions and activities‖ to measure that will predict the 

ability of an individual or organization to produce high-quality architectures in the future 

It seems inevitable that any holistic approach to architecture competence will include aspects of 

past performance as well as present environment and activities. 

At this point we can posit a definition of architecture competence for an organization that reflects 

both present activities and past results, and accounts for the competence of individuals, teams, and 

organizations: 



 

 SOFTWARE ENGINEERING INSTITUTE | 7 

The architecture competence of an organization is the ability of that organization to grow, 

use, and sustain the skills and knowledge necessary to effectively carry out architecture-

centric practices at the individual, team, and organizational levels to produce architectures 

with acceptable cost that lead to systems aligned with the organization’s business goals. 

This will be the working definition of competence for this report, although we eventually hope to 

craft a more concise one.  

1.2 MODELS OF COMPETENCE 

Figure 2 shows how software architecture is positioned among certain other key software engi-

neering artifacts and activities. The solid arcs above the circles show transformation from one 

stage to another. Light dashed arcs below the circles show verification.
1
 Along the bottom, the 

figure also shows some of the artifacts that emerge from the stages, such as a specification of the 

organization’s business goals [Kazman 2005], the requirements for the system being developed, 

and the architecture. 

 

 
Figure 2: Software Engineering Artifacts, Transformations, and Verifications 

Figure 2 is not intended to be a definitive architecture-based life-cycle model—every organization 

is likely to follow its own whether captured in a diagram or not—but rather a sketch showing the 

most important activities to which architecture contributes and by which architecture is informed. 

The architecture-centric practices mentioned in our definition of competence can be seen as those 

practices that (a) allow an organization or individual to traverse the arcs in this diagram or  

 
1
  Testing is treated in this figure as a validation activity from implementation to requirements. 



8 | CMU/SEI-2008-TR-006 

(b) allow an organization or individual to improve the execution of those practices across systems 

and over time. 

Our research has uncovered four distinct models of organizational and human behavior that can 

be applied to software architecture and help us evaluate and improve how individuals and organi-

zations traverse the arcs in Figure 2. These models are  

1. Duties, Skills, and Knowledge (DSK) model of competence: This model is predicated on the 

belief that architects and architecture-producing organizations are useful sources for under-

standing the tasks necessary to the job of architecting. Developing this model will involve 

cataloging what architects and organizations do and know, building measures for how well 

they do and know it, and crafting improvement strategies for their duties, skills, and know-

ledge. 

2. Human Performance model of competence: This model is based on the human performance 

engineering work of Thomas Gilbert [Gilbert 1996]. This model is predicated on the belief 

that competent individuals in any profession are the ones who produce the most valuable re-

sults at a reasonable cost. Developing this model will involve figuring out how to measure 

the worth and cost of the outputs of architecture efforts, finding areas where that ratio can be 

improved, and crafting improvement strategies based on environmental and behavioral fac-

tors. 

3. Organizational Coordination model of competence: This model is being developed through 

ongoing research related to multisite development of software. The focus is on creating an 

inter-team coordination model for teams developing a single product or a closely related set 

of products. The architecture for the product induces a requirement for teams to coordinate 

during the realization or refinement of various architectural decisions. The organizational 

structure, practices, and tool environment of the teams allow for particular types of coordina-

tion with a particular inter-team communication bandwidth. The coordination model of com-

petence will compare the requirements for coordination that the architecture induces with the 

bandwidth for coordination supported by the organizational structure, practices, and tool en-

vironment [Cataldo 2007]. 

4. Organizational Learning model of competence: This model is based on the concept that or-

ganizations, and not just individuals, can learn. Organizational learning is a change in the or-

ganization that occurs as a function of experience. This change can occur in the organiza-

tion’s cognitions or knowledge (e.g., as presented by Fiol and Lyles [Fiol 1985]), its routines 

or practices (e.g., as demonstrated by Levitt and March [Levitt 1988]), or its performance 

(e.g., as presented by Dutton and Thomas [Dutton 1984]). Although individuals are the me-

dium through which organizational learning generally occurs, learning by individuals within 

the organization does not necessarily imply that organizational learning has occurred. For 

learning to be organizational, it has to have a supra-individual component [Levitt 1988]. To 

measure organizational learning, we can consider three approaches: (1) measure knowledge 

directly though questionnaires, interviews, and verbal protocols; (2) treat changes in routines 

and practices as indicators of changes in knowledge; or (3) view changes in organizational 

performance indicators associated with experience as reflecting changes in knowledge [Ar-

gote 2007]. 



 

 SOFTWARE ENGINEERING INSTITUTE | 9 

We will use and integrate the best parts of each of these models to create a useful evaluation in-

strument for architecture competence, as well as to identify specific improvement strategies. 

1.3 ORGANIZATION OF THIS REPORT 

The remainder of this report is organized as follows. Sections 2, 3, 4, and 5 address the DSK, 

Human Performance Technology, Organizational Coordination, and Organizational Learning 

models, respectively.
2
 Section 6 considers the four models as a group and makes observations 

about their synergy. Section 7 explains how we will build an evaluation instrument based on the 

four models. Section 8 summarizes the report, describes related work and its relevance, and lays 

out future work in this area. 

 
2
  Section 2 details the Duties, Skills, and Knowledge model. Its treatment is the longest of the four. The other 

three models exist as a body of separate work in the open literature, but DSK models were inventoried explicitly 

as part of our research in architecture competence, and this report is the definitive summary of that research. 



10 | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 11 

2 The Duties, Skills, and Knowledge (DSK) Model 

The ideal architect should be a man of letters, a skillful draftsman, a mathematician, familiar 

with historical studies, a diligent student of philosophy, acquainted with music, not ignorant 

of medicine, learned in the responses of jurisconsults, familiar with astronomy and astro-

nomical calculations. 

– Vitruvius, De Architectura (25 BC) 

 

Expertise in German / French / Japanese… will be an added advantage. 

– from a position description for Senior 

Technical Architect at Infosys Technolo-

gies Ltd. in India, 2006   

One of the two main schools of thought presented in Section 1 holds that competence deals with 

the skills and knowledge necessary to carry out assigned tasks. Someone who is competent is 

someone who is ―capable of performing an allotted or required function.‖ For the purpose of this 

report, the tasks are those of software architects. To help architects improve, we need to first un-

derstand what they do. What are their specific duties? What skills and knowledge make them ―ca-

pable of performing their allotted or required function?‖  

Architects perform many activities beyond directly producing an architecture. These activities, 

which we call duties, form the backbone of individual architecture competence. A survey of the 

broad body of information aimed at architects (such as websites, courses, books, and position de-

scriptions for architects) as well as a survey of practicing architects tell us that duties are but one 

aspect. Writers about architects also speak of skills and knowledge. For example, the ability to 

communicate ideas clearly is a skill often ascribed to competent architects. Courses aimed at arc-

hitects imply that architects need to have up-to-date knowledge about topics such as patterns, da-

tabase platforms, web services standards, or quality attributes.  

Therefore, duties, skills, and knowledge
3
 form a triad upon which architecture competence for 

individuals rests. We hypothesize that the relationship among these three is as shown in Figure 3 

—namely, skills and knowledge support the ability to perform the required duties.
4
 Omniscient, 

infinitely talented architects are of no use if they cannot (for whatever reason) perform the duties 

required of the position; we might say that such people possess great potential, but we would not 

say they were competent.  

 
3
  Some writers speak of the importance of experience. We catalog experience as a form of knowledge.  

4 
 Figure 3 glosses over other relationships that are present. For example, the skill of abstract thinking is informed 

by knowledge of abstractions that have been previously discovered and characterized. 



12 | CMU/SEI-2008-TR-006 

To give examples of these concepts, ―design the architecture‖ is a duty, ―ability to think abstract-

ly‖ is a skill, and ―patterns, styles, and tactics‖ is a part of the body of knowledge. This example 

purposely illustrates that skills and knowledge are important (only) for supporting the ability to 

carry out duties effectively. As another example, ―documenting the architecture‖ is a duty, ―abili-

ty to write clearly‖ is a skill, and ―ANSI/IEEE Std. 1471/2000‖ is part of the related body of 

knowledge. Of course, a skill or knowledge area can support more than one duty.  

 

Figure 3: Skills and Knowledge Support the Execution of Duties 

2.1 WHAT ARE AN ARCHITECT’S DUTIES, SKILLS, AND KNOWLEDGE?  

Assembling a comprehensive set of duties, skills, and knowledge for architects can help us define 

what it means to be a competent architect. To assemble this set we surveyed approximately 200 

sources of information targeted to professional architects in the summer of 2006. The results of 

this survey show what those sources describe as the key duties, skills, and knowledge of the trade. 

We present a distillation—a categorization—of the results of the survey [Clements 2007]. 

Although there is no single definitive or authoritative source for the duties, skills, and knowledge 

required for competence in architecture, there are several community resources that we have can-

vassed to assemble a picture of what an architect and an architecting organization must know and 

do. We divided our information sources into three categories:  

1. Broadcast sources are sources of information written by self-styled experts aimed at mass 

anonymous consumption. These sources include 

 websites related to software architecture. We performed a web search for sites describing 

or giving advice on software architecture. There are many sites and portals on software 

architecture. Well-known examples include Bredemeyer’s site and the Carnegie Mellon
®
 

Software Engineering Institute (SEI) architecture website [Bredemeyer 2007, SEI 2008]. 

For several years, the SEI site has provided a forum for architects to contribute lists of 

their most important architectural duties. We took data from the 16 websites we found 

that explicitly mentioned duties, skills, or knowledge (although we visited many more). 

 blogs and essays related to software architecture. ―Things to Do in Denver If You’re an 

Architect,‖ by van Ommering, is a good example of an essay that explicitly discusses 

architectural duties, skills, and knowledge [van Ommering 2005]. In all, we took data 

from 16 essays. 

 
®

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 



 

 SOFTWARE ENGINEERING INSTITUTE | 13 

 books on software architecture. By looking at the detailed tables of contents (that 

www.amazon.com makes available online) of the best-selling books on software ar-

chitecture, we can infer what authors are prescribing that architects do, have, and 

know. The 25 best-selling titles were surveyed; we made inferences from 23 of 

them. 

2. Sources of training and education tell us what organizations in the business of education or 

training think that architects need to know and what architects (or aspiring architects) are 

paying money to learn. These sources include  

 university courses in software architecture. An extensive web search revealed 29 aca-

demic courses in software architecture. The course descriptions and syllabi provided lists 

of the duties, skills, and knowledge for architects being taught in these courses. 

 public nonacademic (industrial) courses in software architecture. We gathered data from 

22 industrial courses whose descriptions were available online. 

 certificate and certification programs for software architects.
5
 We identified and gathered 

data from seven programs. 

3. Sources related to “doing architecture for a living” tell us what employers are looking for 

and what architects seeking employment are saying about themselves. This category turned 

out to be an especially rich source of duties, skills, and knowledge that were often listed and 

described in exactly those terms. These sources include 

 job descriptions for software architects. We visited the websites of the top 150 Fortune 

500 companies and searched for position descriptions for software architects. We also 

visited major employment sites. We gathered information from 60 job descriptions.   

 résumés of software architects seeking employment. We harvested about a dozen 

résumés from employment sites. 

We are currently distributing a questionnaire to practicing software architects and will add this 

fourth source to the corpus in the future.  

2.2 ADVANTAGES AND CHALLENGES OF THE APPROACH 

The practice of surveying the community to arrive at a picture of best practices has several things 

that recommend it. The first is that such surveying avoids definition wars. We do not dwell on 

defining what an architect is or does, and what architecture is; for these things, we simply accept 

the weight of evidence provided by community consensus.  

Second, surveying does not limit data by assuming that only a particular career path leads to be-

coming an architect. For the most part, surveying also makes unnecessary the discussion of differ-

ent kinds of positions—senior designer, software architect, chief architect, software solution arc-

hitect, IT architect, and so forth. Our focus includes anyone who produces software architectures.  

 
5
  A certificate indicates successful completion of a course of study. A certification indicates tested mastery of 

information or abilities. 

http://www.amazon.com/


14 | CMU/SEI-2008-TR-006 

Third, we believe that the approach works equally well for individual and organizational compe-

tence in architecture. Organizations have architecture-centric duties (e.g., establishing an architec-

ture review board or giving adequate schedule and budget to a project’s architecture activities), 

skills (e.g., human resource skills for adequately hiring, mentoring, and rewarding architects), and 

knowledge (e.g., how to assemble the most effective architecture teams). Our data gathering for 

organizational duties, skills, and knowledge is still in progress and will not be addressed in this 

report. 

Fourth, the approach is systematic and removes us from the need to address competence in an ad 

hoc fashion. There are only so many sources of knowledge, and it is in fact feasible to gather a 

representative sample of each kind. Further, the sources are not limited to one industry, geograph-

ic region, or economic sector. 

Fifth, focusing on duties, skills, and knowledge provides an operational way to assess current 

competence (measure the effectiveness of performance of the architect’s duties, the strength of the 

skills, and the extent of the knowledge) as well as to predict future competence (measure the skills 

and the mastery of the knowledge). It also suggests an obvious and actionable approach to im-

prove individual competence: practice the duties, improve your skills, and master the knowledge.  

The approach had its challenges. The foremost was deciding whether a given data source was tru-

ly referring to a software architect. A bewildering variety of current job titles contain the word 

architect. ―IT architect,‖ ―solution architect,‖ ―software systems architect,‖ ―enterprise architect,‖ 

―Java architect,‖ ―middleware architect,‖ ―platform architect,‖ and ―enterprise architect‖ are just a 

few examples. We even encountered ―code architect.‖  

Our approach was to automatically accept data about any title that contained the words software 

and architect. We also decided to include ―IT architect‖ and other roles we found on the basis of 

the software-intensive material we observed in those job descriptions. We explicitly decided not 

to include enterprise architects, since enterprise architecture is related to, but different from, the 

profession we are targeting. We then looked at the remaining job descriptions on a case-by-case 

basis. If the information explicitly mentioned duties, skills, or knowledge as applied to software 

architecture, we included it. For books we were stricter—the title had to include the words soft-

ware and either architect or architecture. 

The second challenge was dealing with data (e.g., a position description) that was declared to be 

for a software architect but was clearly written using the word only as a prestigious title for a de-

veloper. Again, we handled this on a case-by-case basis, looking into the duties, skills, and know-

ledge mentioned by the source for something actually related to architecture. 

A third challenge, which turned out to be less vexing than we anticipated, was assigning data to 

categories. For example, is leadership a duty, a skill, or a kind of knowledge? What about mentor-

ing? Here, we let the information source guide us. Where ―leadership‖ was written as something 

the architect had to do or perform, it became a duty. If it was written as something the architect 



 

 SOFTWARE ENGINEERING INSTITUTE | 15 

had to be good at, we listed it as a skill. If it was written as something the architect had to know 

about or know how to do, it went into the knowledge bin.  

The fourth challenge was knowing when to stop surveying. Where it was practical, we carried out 

exhaustive surveys of particular sources. For example, we cataloged every university software 

architecture course that was returned in Google searches. In cases where exhaustive searches were 

not practical, we stopped when it seemed that subsequent sources were not revealing any new in-

formation. This was a subjective assessment. 

Fifth, what to do with like-sounding entries? For example, is ―gather requirements‖ the same duty 

as ―interact with stakeholders to see what their needs are?‖ Is ―accommodating‖ the same skill as 

―flexible?‖ What shall we do with ―document the software‖ and ―document the software using 

views meaningful to the stakeholders?‖ There were hundreds of conundrums like this, which we 

finessed by avoiding the problem completely. Instead of merging the data as we collected it, we 

took the approach of treating each piece of advice as a legitimate and unique contribution. Only in 

the case of identical or near-identical wording did we merge two items into one (but then we 

counted that one as occurring twice). We then engaged an affinity diagramming exercise to pro-

duce clusters, which we have used as the basis of our results. The affinity diagramming exercise is 

explained in the Section 2.3. 

2.3 PROCESSING THE RAW DATA 

Our information gathering resulted in over 400 duties, skills, and knowledge areas, each of which 

somebody thinks is important for software architects to master. The guidance we found for archi-

tects ranges from the broad and predictable… 

 ―analyze and validate the architecture‖ 

 perform ―tradeoff analysis‖ 

 ―prepare architectural documents and presentations‖ 

…to the prescriptively methodical…. 

 ―choose the set of views that will be most valuable to the architecture’s community of stake-

holders‖ 

 ―measure results using quantitative metrics and improve both personal results and teams’ 

productivity‖ 

…to the ethereal bordering on spiritual… 

 have ―political sagacity‖ 

 ―focus on the big picture‖ 

 ―build trusted advisor relationships‖ 

 ―know yourself‖ 



16 | CMU/SEI-2008-TR-006 

Viewing all of it—the mundane and the inspiring, the obvious and the unexpected, the popular 

and the esoteric—as a single body of work resulted in an emerging picture of what ―the communi-

ty‖ (as defined by the sources we polled) believes are the attributes we should ascribe to a soft-

ware architect. The result was about 200 separately cataloged duties, about 100 skills, and about 

100 areas of knowledge. To extract order from the chaos, we performed an affinity diagram exer-

cise to add structure to the duties, skills, and knowledge.  

The affinity diagram was originally developed by anthropologist Kawakita to aid in discovering 

meaningful groups of ideas from a raw list [Tague 2005]. Kawakita’s approach is to examine the 

list and let groupings emerge naturally and intuitively, rather than by following a pre-ordained 

categorization [Beyer 1998]. An affinity diagram allows for categories that are not mutually ex-

clusive. The steps of the affinity diagram process are (briefly) as follows: 

1. Assemble the team.  

2. Write individual statements on note cards. 

3. Group the statements.  

4. Name each group. 

5. Cluster the groups. 

In our case, we performed three separate affinity exercises (one each for duties, skills, and know-

ledge), which took about eight hours over three consecutive days. Our affinity exercise did not 

result in the allocation of any datum to more than one cluster, although unique membership was 

not a constraint of the exercise. 

2.4 DUTIES 

This section summarizes the sources we found that speak to an architect’s duties. The data and the 

results of the affinity exercise are shown in Table 1.  

Table 1: The Duties of a Software Architect 

General Duty Area Specific Duty Area 

Architecting Creating an architecture 

Architecture evaluation and analysis 

Documentation 

Existing system and transformation 

Other architecting duties not specific to the above categories 

Life-cycle phases other than  

architecture 

Requirements 

Coding 

Testing 



 

 SOFTWARE ENGINEERING INSTITUTE | 17 

Table 1:  The Duties of an Architect, cont’d.  

General Duty Area Specific Duty Area 

Life-cycle phases other than  

architecture (cont’d.) 

Future technologies 

Tools and technology selection 

Interacting with stakeholders Interacting with stakeholders in general, or stakeholders other than clients or 

developers 

Clients 

Developers 

Management Project management 

People management 

Support for management 

Organization and business related Organization  

Business 

Leadership and team building Technical leadership 

Team building 

2.5 SKILLS 

Given the wide range of duties enumerated in the previous section, what skills (beyond mastery of 

the technical
6
 body of knowledge) does an architect need to possess? Much has been written about 

the architect’s special role of leadership in a project; the role requires the architect to be an effec-

tive communicator, manager, team builder, visionary, and mentor.  

Some certificate or certification programs emphasize nontechnical skills; for example, Microsoft 

offers certification programs for Infrastructure Architects and Solutions Architects. Common to 

both certification programs are nontechnical assessment areas of leadership, organization dynam-

ics, and communication [Microsoft 2008].  

Architecture consultant Dana Bredemeyer has written extensively about the skill set needed by an 

architect [Bredemeyer 2007]. His website lists a number of nontechnical skills necessary for a 

software architect. The August 2005 newsletter of the International Association of Software Arc-

hitects, Perspectives of the IASA, includes an article titled ―System Architect: Necessity, Not 

Luxury‖ by Jeffcoat and Yaghoobi [Jeffcoat 2005]. They write that in addition to fulfilling tech-

nical responsibilities, the architect must also serve as leader, mentor, liaison, designer, and visio-

nary (and the authors provide a paragraph about each).  

 
6
  We use technical in this report to describe information related to computer science or software engineering, and 

nontechnical to refer to other kinds of skills or knowledge. 



18 | CMU/SEI-2008-TR-006 

The UK Chapter of the International Council on Systems Engineering (INCOSE) maintains a 

―Core Competencies Framework‖ for systems engineers that includes a ―Basic Skills and Beha-

viours‖ section listing ―the usual common attributes required by any professional engineer‖ 

[INCOSE 2005].  The list includes coaching, communicating, negotiating, influencing, and ―team 

working.‖  

As a final note, Turley and Bieman identify a set of 38 ―competencies‖ for software engineers that 

we would call skills [Turley 1995]. We mention this only in passing, as our work concentrates on 

skills for software architecting, a specialization of software engineering. There is overlap, of 

course, but the skill sets are not identical. 

Table 2 is a full set of skills gleaned from our information gathering.  

Table 2: The Skills of a Software Architect 

General Skill Area Specific Skill Area 

Communication skills External communication skills   

Communication skills in general 

Internal communication skills 

Interpersonal skills Within team 

Outside of team 

Work skills Leadership 

For effectively managing workload 

For excelling in corporate environment 

For handling information 

Personal skills Personal qualities 

For handling unknown factors 

For handling unexpected developments 

Learning skills 

2.6 KNOWLEDGE 

A competent architect has an intimate familiarity with the architectural body of knowledge. The 

software architect should  

 be comfortable with all branches of software engineering from requirements definition to im-

plementation, development, and verification and validation  

 be familiar with supporting disciplines such as configuration management and project man-

agement  

 understand current design and implementation technologies  



 

 SOFTWARE ENGINEERING INSTITUTE | 19 

Knowledge and experience in one or more application domains is also necessary. 

The body of knowledge issue was addressed at the 2006 Working International Federation for 

Information Processing/Institute of Electrical and Electronics Engineers (IFIP/IEEE) Conference 

on Software Architecture (WICSA). A working group categorized the knowledge needed by a 

software architect [WICSA 2007]. Table 3 presents a summary of this categorization. The num-

bers in the cells are derived from Bloom’s taxonomy for categorizing levels of abstraction [Bloom 

2004]. The dual column headings reflect the dual purpose of the table: It was constructed to guide 

the building of an academic curriculum as well as to help practicing architects in career planning. 

Headings describe experience level and type of degree held: Bachelor of Science (BSc) or Master 

of Science (MSc) in Computer Science (CS) or Software Engineering (SE). 



20 | CMU/SEI-2008-TR-006 

Table 3: Body of Knowledge Needed by a Software Architect  

Topic CS undergrad / 

practitioner with 

BSc in CS 

New programmer / 

practitioner with 

MSc in CS 

New architect / prac-

titioner with MSc in 

SE with focus on SA 

or with significant 

experience 

Basic software engineering knowledge: pro-

gramming, decomposition, version control, and 

so forth 

1 3 5 

People knowledge: leadership, teamwork, 

communication, negotiation, accepting direction, 

mentoring, consulting, and so forth  

0 3 3-5 

Business knowledge 0 1 3 

Architecture techniques: large-scale synthesis, 

complexity management (abstraction, decom-

position, etc.), synthesis, analysis, patterns, 

evaluation, and so forth  

1 2 4 

Requirements engineering 1 1-2 4 

Software project management: deployment, 

process, estimation, and so forth  

1 1 3 or more 

Programming 2 4 2 

Platform technology: databases, networks, em-

bedded, enterprise, integration tools 

2 4 2 

Systems engineering – – – 

Architecture documentation 0 1 5 

Reuse and integration 1 2 4-5 

Domain knowledge 1 1 5 

Mentoring – – – 

Key to table entries: 1=knowledge; 2=comprehension; 3=application; 4=analysis; 5=synthesis; 6=evaluation 

Although these categories provide a well-considered starting point, there is no agreed-upon body 

of technical knowledge that a practicing software architect must master. However, we can con-

struct an overview by surveying a number of sources such as public courses, certification pro-

grams, online job descriptions, and best-selling software architecture books. 

Table 4 is a full set of knowledge areas gleaned from our information gathering. 



 

 SOFTWARE ENGINEERING INSTITUTE | 21 

Table 4: The Knowledge Areas of a Software Architect 

General Knowledge Area Specific Knowledge Area 

Computer science knowledge Knowledge of architecture concepts 

Knowledge of software engineering  

Design knowledge 

Programming knowledge 

Knowledge of technologies  

and platforms 

Specific technologies and platforms 

General knowledge of technologies and platforms 

Knowledge about the organization’s 

context and management 

Domain knowledge 

Industry knowledge 

Enterprise knowledge 

Leadership and management techniques and experience 

2.7 USING THE DSK MODEL TO ASSESS AND IMPROVE THE ARCHITECTURE 

COMPETENCE OF INDIVIDUALS 

In the DSK model, the key to competence lies in the duties, skills, and knowledge of an architect. 

The greater the architect’s ability to carry out the duties and possess the required skills and know-

ledge, the more able that architect is to produce high-quality architectures and hence the more 

competent. We can assess architecture competence according to the DSK model (and our other 

models, as we will show in Section 7). The results of such an assessment instrument can be used 

to identify areas where needed improvements are indicated.  

Given the duties, skills, and knowledge cataloged in our survey, what avenues are available to an 

individual software architect to improve his or her competence? Three strategies emerge from the 

DSK model:  

1. Gain experience carrying out the duties: Apprenticeship is a productive path to achieving 

experience. Education alone is not enough, because education without on-the-job application 

merely enhances knowledge. 

2. Improve nontechnical skills: This dimension of improvement involves taking professional 

development courses, for example, in leadership or time management. 

3. Master the body of knowledge: One of the most important things a competent architect 

must do is master the body of knowledge and remain up-to-date on it. Taking courses, be-

coming certified, reading books and journals, visiting websites and portals, reading blogs, at-

tending architecture-oriented conferences, joining a professional societies, and meeting with 

other architects are all useful ways to improve knowledge.  



22 | CMU/SEI-2008-TR-006 

2.8 DUTIES, SKILLS, AND KNOWLEDGE FOR A SOFTWARE ARCHITECTURE 

ORGANIZATION 

The DSK model can be applied to describing and predicting the competence of teams of architects 

and architecture-producing organizations as well as to individual architects. For example, ade-

quately funding the architecture effort is an organizational duty, as is effectively using the availa-

ble architecture workforce (by propitious teaming, etc.). These are organizational duties because 

they are outside the control of individual architects. An organization-level skill might be effective 

knowledge management or human resource management as applied to architects. An example of 

organizational knowledge is the composition of an architecture-based life-cycle model that all 

software projects use.
7
  

An in-depth survey for organizational duties, skills, and knowledge is not feasible because there 

isn’t the same wealth of information resources for architecture organizations as for individuals. 

Nevertheless, it is possible to list a number of likely candidates in each category, using 

 our own experience 

 preliminary results from a questionnaire given to practicing architects 

 the organizations’ architecture improvement efforts to which we are privy 

 enterprise architecture competence frameworks and maturity models 

From these sources we have drawn up a candidate list of architectural duties for an organization: 

 Hire talented architects. 

 Establish a career track for architects. 

 Make the position of architect highly regarded through visibility, reward, and prestige. 

 Establish a clear statement of responsibilities and authority for architects.  

 Establish a mentoring program for architects. 

 Establish an architecture training and education program.  

 Track how architects spend their time. 

 
7
  Joe Batman provides a nice example of a prescription of organizational duties in his essay ―Hunting the Product 

Line Architecture.‖ He lists the following organizational characteristics as essential for producing good architec-

tures on a routine basis [Batman 2008]:      

 architectures created within a defined-process atmosphere that imposes standards and follows written 

processes  

 the incorporation of architecture design and evaluation into development processes and plans  

 management of the development process that reflects the central role of architecture specification  

 corporate-level policies, processes, and investments that support the creation and maintenance of sets of 

common reusable assets 

 specific and comprehensive requirements elicitation for architecture  

 adequate provision of a process for sustaining the architecture  

 quality assurance organizations that are integrated into the process of architecture design and evaluation  

 architects or an architect assigned to each project  

 a training program for developers and other stakeholders to educate them on the role of architecture  
 addressing the cultural barriers associated with architecture-centric development 



 

 SOFTWARE ENGINEERING INSTITUTE | 23 

 Establish an architect certification program. 

 Have architects receive external architect certifications. 

 Measure architects’ performance. 

 Establish a forum for architects to communicate and share information and experience. 

 Establish a repository of reusable architectures and architecture-based artifacts. 

 Develop reusable reference architectures. 

 Establish organization-wide architecture practices. 

 Establish an architecture review board. 

 Measure the quality of architectures produced. 

 Provide a centralized resource to analyze and help with architecture tools. 

 Hold an organization-wide architecture conference. 

 Initiate software process improvement or software quality improvement practices. 

 Have architects join professional organizations. 

 Bring in outside expert consultants on architecture. 

 Include architecture milestones in project plans. 

 Have architects provide input into product definition. 

 Have architects advise on the development team structure. 

 Give architects influence throughout the entire project life cycle.  

 Reward/penalize architects based on project success. 

Once we have a degree of confidence in a set of effective duties, skills, and knowledge areas for 

organizations, an assessment instrument and strategies for improvement should follow as they did 

for individuals (see Section 7 for more about assessment instruments). 



24 | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 25 

3 The Human Performance Technology Model 

If I want to know if people are competent, I have to observe how they behave, don’t I? My 

answer to such questions is a firm “No!” 

      ―Thomas F. Gilbert (1928-1995) 

The second model of competence we are exploring comes to us from the world of human perfor-

mance technology (HPT). A leading contributor to that field, sometimes called its ―father,‖ was 

Thomas F. Gilbert, an engineer who applied his understanding of the process of technological 

improvement to human beings [Wikipedia 2007a].
8
 

Gilbert’s best-known contribution to the field was the foundational book Human Competence: 

Engineering Worthy Performance, originally published in 1978 [Gilbert 1978]. A ―tribute edition‖ 

was released in 1996, one year after Gilbert’s death [Gilbert 1996]. He established the basic prin-

ciples of performance improvement that are used by HPT consultants today (for an example, see 

www.sixboxes.com/The_Model.html) [Six Boxes 2006]. Gilbert identified six variables that he 

believed were necessary to improve human performance:  

 information, resources, and incentives, which he cataloged as environmental factors for which 

management is responsible 

 knowledge, capacity, and motives, which he cataloged as factors inherent in the ―behavior 

repertory‖ of the individual  

Gilbert believed that it was the absence of performance support at work, not an individual’s lack 

of knowledge or skill, that was the greatest barrier to exemplary performance. Therefore, he be-

lieved it was most necessary to focus on variables in the work environment before addressing the 

individual. 

In his article ―McGregor meets Gilbert,‖ Nickols points out that drawing a distinction between 

individual and environment has a long history [Nickols 2007]: 

Earlier, Douglas McGregor drew essentially the same distinction when he wrote: “…the 

performance P of an individual at work in an industrial organization is a function of certain 

characteristics of the individual I, including his knowledge, skills, motivation, attitudes and 

certain aspects of the environmental situation E, including the nature of his job, the rewards 

associated with his performance, and the leadership provided him” [McGregor 1967 p.5]. 

The same dichotomy between the environment and the individual can be seen in Teodorescu and 

Binder’s model shown in Figure 1 on page 4 [Teodorescu 2004]. 

 
8
  The International Society for Performance Improvement’s most prestigious award is the Thomas F. Gilbert Dis-

tinguished Professional Achievement Award (http://www.ispi.org/awards/2006/honorary2006.htm). 

http://www.sixboxes.com/The_Model.html
http://www.ispi.org/awards/2006/honorary2006.htm


26 | CMU/SEI-2008-TR-006 

The difference between focusing on behavior and focusing on performance is more than philo-

sophical; it’s practical. Gilbert points out that in many cases, small differences in behavior can 

lead to large differences in performance. Two marksmen may load and hold their rifles, breathe, 

and sight the target in exactly the same way. But the one who squeezes the trigger will hit the tar-

get, whereas the one who pulls the trigger will not. In spite of almost identical behaviors, one is 

obviously more competent than the other. 

The Human Performance Technology model’s fundamental aspects are as follows [Gilbert 1996]: 

 We wish to engineer worthy performance; that is, performance that produces value at reason-

able cost. Worth = Value / Cost. 

 The Potential for Improving Performance (PIP) is the ratio of exemplary performance to typi-

cal performance, where exemplary performance means the best performance for which we 

could reasonably hope. PIP = Wexemplary / Wtypical. If the best worker in the best environment 

turns in a performance worth 75 units at a cost of 10 units, then that worker’s performance is 

7.5. If the average worker turns in a performance of 2.5, then we have a PIP of 3, which sig-

nals the opportunity to triple what the average performer produces through improvement 

steps. 

High PIPs are opportunities for great improvement and should be the focus of effort. Low 

PIPs (near 1) will require a lot of investment to further improve. PIPs in extremely competi-

tive fields tend to be low,
9
 as do PIPs for highly repetitive tasks. 

This reasoning assumes (which Gilbert explicitly does) that ―poor performers usually have 

great potential.‖ Or, ―the more incompetent a person or a group of people are, the easier it is 

to improve their performance.‖ The ratio, to be meaningful, must be stated for an identifiable 

accomplishment, because there is no ―general quality of competence.‖  

 The key to performance improvement is finding the right measures that accurately reflect the 

value of the performance. 

Measuring performance of various activities throughout an organization can help you find where 

the biggest improvements can be made (see Figure 5). However, acting on the PIP may or may 

not result in economic gain to the organization. It depends on the contribution that activity has to 

the bottom line. That is, when applying the Human Performance Technology model to improve 

architecture competence, we should focus on the aspects of the organization that have the most 

impact on producing high-quality architectures. 

Performance has many dimensions; its worth is not uni-dimensional. Gilbert identifies three kinds 

of measurements, with subclasses [Gilbert 1996]: 

1. quality 

a. accuracy: degree to which accomplishment matches a model, without errors of omis-

sion or commission 

 
9
  Professional sports provide a good example. Gilbert writes that Babe Ruth scored 177 runs in 1921, whereas 

the average that year was 87.5. By this measure, the PIP = 2.02 for that season, which is one of the highest 

PIPs observed in sports. 



 

 SOFTWARE ENGINEERING INSTITUTE | 27 

b. class: comparative superiority of an accomplishment beyond mere accuracy. Possible 

measures include market value (high-class furniture likely to sell for more), judgment 

points (as for show dogs), physical measures (such as number of manufacturing flaws), 

opinion ratings (Oscars, ―MVP‖) 

c. novelty: state or quality of being novel, new, or unique. An engine that gets 100 miles 

per gallon is novel. For artistic novelty, we probably resort to judgmental points or opi-

nion ratings. 

2. quantity (or productivity) 

a. rate: applies when bulk is important and production is time sensitive (pieces produced 

per hour; time to completion) 

b. timeliness: applies when production is time sensitive, but bulk not important (Cinderel-

la home by midnight, letter mailed by sundown). 

c. volume: applies when bulk is important, but not time sensitive. (―How many fish did 

you catch?‖) 

3. cost 

a. labor: behavior repositories (direct overhead, benefits, wages, insurance, taxes) 

b. material: environmental support (supplies, tools, space, energy) 

c. management: supervision (management supports, public taxes, internal allocations of 

administrative costs) 

3.1 USING THE HUMAN PERFORMANCE TECHNOLOGY MODEL TO MEASURE AND 

IMPROVE ARCHITECTURE COMPETENCE 

Applying Gilbert’s theory to architecture competence involves solving two problems: 

1. How do we measure the worth of an architect’s performance? In particular this involves 

measuring the worth of the various artifacts produced both prior and subsequent to the archi-

tecture during the life cycle. 

2. What sort of organizational and measurement infrastructure is necessary to calculate the 

worth? Even once we know what to measure for worth we still must determine how to 

measure it. What are the possibilities in terms of routine measurement, how are these results 

maintained, and how are they used to improve an organization’s architecture competence? 

As yet, we have only preliminary thoughts on the first question and none to report on the second. 

We propose to use the duties from the DSK model to isolate the various aspects of the architect’s 

job. If we are auditing an organization’s architecture accomplishments, we can identify the job  

 

 

Figure 4: Architecture Job Accomplishments 



28 | CMU/SEI-2008-TR-006 

accomplishments using the duties from the first column of Table 1 on page 16, shown in Figure 4. 

We can refine each of these duties into task accomplishments using the second column of Table 1. 

There is no claim that each of these carries the same value, but each carries some value that can 

be used to measure current performance against an exemplar.  

Gilbert also introduces a Behavior Engineering Model, showing the things we can do to increase 

competence through greater behavior efficiency. The model is shown in Figure 5. 

 

Figure 5: Gilbert’s Behavior Engineering Model  

[Gilbert 1996] 

Gilbert prescribes the following, in the order given, to improve competence: 

1. Begin with ―Data‖ (row 1, col 1). Do the architects know how they should perform and how 

they have performed? 

2. Examine the tools and materials (row 1, col 2) the architects work with. If these can be im-

proved, much training can be eliminated. 

3. Look at incentives (row 1, col 3). How can they be improved and made contingent on good 

performance? 

4. Finally—though not least important—look at training (row 2, col 1). Training is very power-

ful, but often very expensive. 

This order is the most efficient one, because it is likely to get the most improvement for the least 

cost. Further, improving one area is likely to benefit untouched areas. For example, improved in-

centives may lead people to learn more even when there’s been no effort to teach them better.  

 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 29 

4 The Organizational Coordination Model 

Teams at multiple sites developing a single product or a related set of products must cooperate to 

produce a functioning product. The cooperation’s external manifestation is the coordination of 

activities. The goal of this model is to help us understand, within a particular organizational set-

ting 

 what coordination activities are brought on by particular architectural decisions  

 how effective are particular organizational coordination mechanisms 

Understanding the necessary coordination that results from classes of architectural decisions will 

yield the coordination depth and volume associated with an architecture. Understanding the effec-

tiveness of particular coordination mechanisms will yield the coordination potential of an organi-

zational structure. 

Figure 6 shows two modules of an architecture that share a dependency. It shows the development 

team for each module and represents the teams’ coordination. Coordination is defined as ―the 

harmonious combination or interaction, as of functions or parts‖ [Random House 2006]. The har-

monization can be done explicitly (through coordination meetings or various types of communica-

tion), or it can be done implicitly (through documents, processes, or common understanding of 

ongoing tasks). 

 

Figure 6: Dependencies Between Modules with Coordination Between Development Teams 

4.1 DEPENDENCY 

The normal method for dividing large segments of a system into units is to collect them into mod-

ules that have minimal interaction. A Dependency Structure Matrix (DSM) is a common tech-

nique for representing the interaction of the various modules.  



30 | CMU/SEI-2008-TR-006 

Wikipedia describes DSM as follows:  

A Dependency Structure Matrix, or DSM (also referred to as Dependency Structure Me-

thod, Design Structure Matrix, Problem Solving Matrix [PSM], incidence matrix, N-square 

matrix or Design Precedence Matrix), is a compact, matrix representation of a system or 

project. The approach can be used to model complex systems in systems engineering or sys-

tems analysis, and in project planning and project management. 

A dependency structure matrix lists all constituent subsystems/activities and the correspond-

ing information exchange and dependency patterns. In other words, it details what pieces of 

information are needed to start a particular activity, and shows where the information gen-

erated by that activity leads. In this way, one can quickly recognize which other tasks are re-

liant upon information outputs generated by each activity. 

DSM analysis provides insights into how to manage complex systems or projects, highlight-

ing information flows, task sequences and iteration. It can help teams to streamline their 

processes based on the optimal flow of information between different interdependent activi-

ties [Wikipedia 2007b]. 

As indicated by this description, determining whether a dependency exists and a dependency’s 

type is not necessarily a simple exercise. Dependencies can be activity based or information 

based. These dependencies are determined by examining the runtime behavior of the system. 

Teams, on the other hand, develop modules (a static portion of the system). The determination of 

a dependency, then, involves understanding the runtime behavior of a system and working back 

from that to the modules. 

Our study of the organizational coordination component of architecture competence will focus on 

the techniques used by an organization to determine the dependencies among modules, under-

standing that the architecture evolves during the development process.  

4.2 THE COORDINATION CAPABILITY OF AN ORGANIZATION 

Figure 7 shows some of the factors that determine an organization’s coordination capability. An 

organization coordinates through its structure, its processes, and the tools used to support the 

coordination. When the different development teams are colocated, opportunities exist for various 

informal coordination mechanisms, such as meeting in the lunch room or at social events, that are 

not available when the teams are in different geographical locations.  

http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Systems_analysis
http://en.wikipedia.org/wiki/Systems_analysis
http://en.wikipedia.org/wiki/Project_planning
http://en.wikipedia.org/wiki/Project_management


 

 SOFTWARE ENGINEERING INSTITUTE | 31 

 

Figure 7: Factors that Affect Coordination Capability of an Organization 

An organization’s ability to match the coordination capability with the coordination requirements 

imposed by the architecture is a facet of architecture competence. Coordination among the devel-

opment teams allows decisions to be made with an appreciation of the context and the implica-

tions. Suppose Team A and Team B must both make decisions about how to manage the granular-

ity of an image in their modules. If their decisions are consistent, image integration will be 

smoother than if their decisions are inconsistent. Options for supporting consistent decision mak-

ing between the relevant developers include using an intermediary, having a facilitator, or enabl-

ing the relevant developers to communicate directly. Each of these options introduces overhead 

and provides benefits in terms of sharing knowledge, bringing additional contextual information 

to bear on the decision, and utilizing the decision to make future decisions. For example, some 

benefits of having an architect as an intermediary between the two sets of developers are the 

availability of additional contextual information and the ability to utilize the decision when mak-

ing future decisions. Some costs of an intermediary include the possibility of bottlenecks, the po-

tential of introducing delays, and the potential loss of information when it is passed between de-

velopers. 

This is one example of how an organization might influence the coordination capability. There are 

similar examples in terms of the development processes that are engaged and the tools that are 

used to support the coordination aspects of the development activity. 

4.3 MEASURING THE COORDINATION ACTIVITIES 

Since the relation between coordination activities and architecture impacts architecture compe-

tence, it is important to understand how to measure the coordination. We have already discussed 

the use of DSMs as a means for measuring the requirements for coordination. Measuring the 

coordination activities among teams can be done across several axes, for example 

 the coordination activity between teams and various artifacts. For example, how frequently is 

the architecture documentation accessed by various teams? This data is usually maintained by 

the content management system. 

 the coordination activity related to particular known problems. This activity can be measured 

by examining discussion board posts. How many posts does it take to solve problems, and 

what is the duration of the discussions?  



32 | CMU/SEI-2008-TR-006 

Surveys of developers can also be performed at a small cost. Conducting a five-minute survey 

every month or so can make available data about whether problems are quickly resolved and what 

developers consider the main impediment to getting the information they need to solve their prob-

lems. 

4.4 RELATING ORGANIZATIONAL CAPABILITY TO DEPENDENCIES 

The two aspects we have discussed—(1) dependencies within an architecture and how they evolve 

and (2) organizational coordination capability—should be aligned within an architecturally com-

petent organization. 

We would expect, when looking at an organization that is architecturally competent, to see evi-

dence that the following types of concerns have been addressed within a development project: 

 Dependencies and their evolutionary paths are identified.   

 The choice of coordination mechanisms used among various teams is appropriate to the type 

of dependencies among the modules being developed by those teams. 

 The choice of coordination mechanisms used among teams during development changes is 

appropriate to the portions of the modules being developed during particular increments. 

Our point is not that one organization structure or set of processes is better than another for per-

forming multisite development but that the interaction of the architecture, the organization struc-

ture, the development processes, and the tools used for coordination affect the time required to 

develop the system from the architecture (Gilbert’s Quantity Measure) as well as the accuracy of 

the architecture (Gilbert’s Quality Measure). 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 33 

5 The Organizational Learning Model 

The final model that we will consider comes from the field of organizational learning. Argote and 

Todorova summarize and provide a framework for the research performed in this field since 1995 

[Argote 2007]. Organizational learning is defined as a ―change in an organization that occurs as a 

function of experience.‖ This change could be reflected in various ways including in changes to 

the organization’s knowledge, its routines, or its performance.  

Learning processes transform experience into knowledge, moderated by context. The framework   

has four classes or variables shown in the lower half of Figure 8: experience flows, learning 

processes, knowledge stock, and organizational context [Argote 2007]. The figure as a whole 

shows the relationship between organizational learning and some important architecture-centric 

practices. Carrying out the duties associated with the transformations between artifacts and the 

verifications of those transformations provide the architecture-centric experiences. Learning 

processes will transform these experiences into knowledge stock. Given that an organization has 

suitable learning processes, it will be able to exploit this knowledge stock in future experiences. 

This cycle shows how organizational learning contributes to an organization’s architecture com-

petence.  

 

Figure 8: The Relationship Between Architecture Design Competence and Organizational Learning  



34 | CMU/SEI-2008-TR-006 

5.1 THE COMPONENTS OF THE ORGANIZATIONAL LEARNING FRAMEWORK 

According to the Argote/Todorova framework, the antecedents, processes, and outcomes of learn-

ing consist of experience, the context, learning processes, and the knowledge stock [Argote 2007]. 

And these antecedents, processes, and outcomes work at three levels: individual, group, and orga-

nizational. The Argote/Todorova definition of context includes the higher level for each of the 

levels of learning that the framework describes. For example, for individual learning, the context 

includes the groups in which the individual is embedded. The influence of the lower level on the 

learning processes occurs through experience. For example, both group experiences and individu-

al experiences are inputs to group learning processes.  

Experience is what happens to the individual, group, or organization in performing the task, while 

knowledge is the outcome of the processing of the experience via learning. Experience might be 

measured by the cumulative number of tasks performed. The flow of experience in an organiza-

tion can be characterized along several dimensions that can operate at the individual, group, or 

organizational levels. One important dimension of experience is whether it is direct—based on an 

organizational unit’s own direct experience, or indirect—based on the experience of others. 

Another dimension is content: is the experience about tasks or about relationships? Experience 

can also be characterized spatially, as discussed in Section 4 of this report: it can be acquired in 

close spatial proximity (colocated teams, for example) or it can be acquired across distant loca-

tions. Other dimensions of experience include novelty, heterogeneity, and ambiguity. Experience 

can also be characterized in terms of whether it is a success or failure. Finally, the flow of expe-

rience can be characterized along temporal dimensions, including its pace and how recent it is.  

An architecturally competent organization will understand the organizational learning opportuni-

ties presented by the various types of experiences in performing architecture-centric practices 

[Argote 2007]. 

Organizational learning processes transform experience into knowledge. The ―mindfulness‖ in-

volved in the experience affects how it is processed. Mindful processes involve attention, whereas 

less mindful processes are driven by routines or rules. Mindful processing is typically under the 

individual’s control; less mindful processing occurs without an individual’s active control. For 

example, an architecture team that conducts a review or architecture analysis after completing a 

module or subsystem to learn what went well and what went wrong exemplifies a group engaging 

in mindful learning. Learning processes also vary according to whether the learning occurs direct-

ly as a result of the unit’s own experience or indirectly through the experience of others. Organi-

zations may learn from their own direct experience, or they may learn from the experience of oth-

er units. The architecture team reviewing its own experience is learning from its own experience. 

A team that consults another team and adopts its superior practice is learning from the experience 

of others. This form of organizational learning is referred to as knowledge transfer.  

An architecturally competent organization will strive to understand which types of learning 

processes are best suited for different types of experiences [Argote 2007]. 



 

 SOFTWARE ENGINEERING INSTITUTE | 35 

The learning context consists of two main components: the organization and the environment. 

Both formal and informal aspects of the organization affect organizational learning. Formal orga-

nizational arrangements, such as technology and structure, influence organizational learning and 

knowledge transfer, as discussed earlier in this report. But informal aspects of the organizational 

context, such as culture and social networks, also influence learning processes. Learning 

processes occur in communities of practice that may cut across organizational boundaries. The 

volatility and heterogeneity of the environment also affect learning processes and outcomes. In 

highly dynamic environments where the learning situation is changing dramatically all the time, 

the causality of events may be difficult to ascertain. The constraints on learning can lead to a bias 

towards less mindful learning processes and to ―superstitious‖ learning characterized by inappro-

priate inferences being drawn from experience. After knowledge is created through learning 

processes, it is embedded in a reservoir or repository in the organization. For example, knowledge 

acquired by the architecture team could be embedded in a new method, a tool, or an individual 

team member’s understanding of some aspect of the procedure.  

An architecturally competent organization will strive to understand how various types of learning 

contexts affect the transformation of experience into knowledge stock [Argote 2007]. 

5.2 USING THE ORGANIZATIONAL LEARNING FRAMEWORK TO MEASURE AND 

IMPROVE ARCHITECTURE COMPETENCE 

Measuring organizational knowledge is a challenge. Historically, three approaches have been tak-

en to measuring it:  

1. Measure directly though questionnaires, interviews, and verbal protocols, scoring these to 

quantify differences between individuals or to note learning over time. An exam that tested 

an architect’s knowledge of architectural styles, analysis techniques, and quality attributes 

might be an example of such a measurement instrument.  

2. Regard changes in routines and practices as indicators of changes in knowledge. If a group 

changes how it reviews an architecture prior to each major development stage, that might in-

dicate that organizational learning has taken place.  

3. View changes in organizational performance indicators associated with experience as reflect-

ing changes in knowledge. For example, if a team becomes better at delivering its products 

within budget and within schedule, we would infer that the team has learned better methods 

than it engaged in the past.  

 

 



36 | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 37 

6 Considering the Models Together 

6.1 HOW THE MODELS TOGETHER SUPPORT EVALUATION 

In Section 1, we asserted that the ―end game‖ of competence was to carry out architecture-centric 

practices reliably and efficiently, and to improve that capability across systems and over time. 

How do the models help us evaluate an individual’s or organization’s ability to do that? The prac-

tices are carried out by various groups of people using processes and tools. The models will let us 

examine these from different perspectives from which will emerge an overall picture of compe-

tence. 

Clearly duties, skills, and knowledge (on the part of organizations as well as individuals) are in-

volved in the practices we described in Section 1.2; those practices can be cast as duties, while 

supporting skills and knowledge are necessary for successful completion of the duties. 

To effectively perform practices and duties, individuals and groups must have a repository of ac-

cumulated knowledge and experience. The Organizational Learning model provides a way to eva-

luate how effective that repository is. It also tells us how ―mindful‖ the learning needs to be. 

The organizational coordination model, in practice, concentrates most heavily on the practice that 

produces an architecture-conformant implementation, and tells us how effective the organization 

is likely to be at carrying out that practice. Since fielding a system is the ultimate point of building 

an architecture, it is reasonable to have an architecture competence model that focuses on that 

activity. 

Behind all of this lies the HPT model that tells us how to value the artifacts produced by the prac-

tices. A ―Gilbertian‖ view of the world will let us apply value to the answers we get from our 

questions, and gives us the hypotheses we need to evaluate. 

Given the four models, it is tempting to try to produce a ―grand unified theory of competence‖ by 

somehow combining them. For example, it is easy to see how the DSK and HPT models can be 

usefully combined. HPT calls for calculating the value or worth of specific job accomplishments 

so that low-performing areas can be targeted for improvement. Improvement, in turn, depends on 

identifying the steps involved in carrying out a task. Both of these are handily served by the DSK 

model, which supplies the list of job accomplishments and task steps in the form of duties. One 

specific HPT improvement strategy is to provide performers with information that they internalize 

as knowledge. What kind of knowledge? Again, the DSK model tells us. In this combination of 

the HPT and DSK models, HPT is dominant and takes input from DSK when needed. 

Similarly, the Organizational Learning model is concerned with how organizations internalize and 

utilize knowledge. One way organizations do this is by building and nurturing appropriate and 



38 | CMU/SEI-2008-TR-006 

effective coordination mechanisms. Testing how well they’ve done this to achieve an end (in this 

case, producing high-quality architectures
10

) can be accomplished through HPT methods. In this 

combination of models, organizational learning is dominant and ―calls‖ the other three to inform it 

in specific areas.  

For now, we have chosen not to produce a ―unified model of competence,‖ focusing instead on 

using the strengths of each of the models to inform our competence evaluation instrument and 

improvement strategies.  

6.2 PRINCIPLES EMBODIED BY THE MODELS 

If the end game of competence is to predictably and repeatably produce high-quality architectures 

by effectively carrying out the important architecture-centric practices, it is imperative that each 

model be clear on how it contributes to that goal. Viewed in this light, each model can be seen to 

embody a set of assumptions or hypotheses—we’ll call them principles—where a principle takes 

the form 

 X is likely to lead to high-quality architectures because Y. 

For example, the DSK model implicitly assumes that carrying out the listed duties, possessing the 

listed skills, and having the listed knowledge is more likely to lead to high-quality architectures. 

For instance, a prescribed skill from the DSK model is the ability to handle the unknown, which 

reflects the following principle: 

Possessing skills to handle the unknown is likely to lead to high-quality architectures  

because the architect will be able to effectively identify areas of uncertainty and  

be equipped to take the appropriate steps to either eliminate the uncertainty or  

make the architecture flexible to accommodate it. 

A duty, such as documenting the architecture, immediately suggests this principle: 

Documenting the architecture is likely to lead to high-quality architectures because  

documentation is essential to effective communication, which is essential to effective under-

standing and use by the architecture’s stakeholders, which is in turn essential to providing 

timely and useful feedback. 

A seemingly ―extracurricular‖ duty such as mentoring other architects suggests this principle: 

 
10

  A high-quality architecture is one that predictably enables the creation of a system that satisfies the producing 

organization’s business goals. 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 39 

Mentoring other architects is likely to lead to high-quality architectures because being men-

tored is an effective way to gain real-world experience and thus become a more capable archi-

tect. 

The principles behind HPT start with the following overarching one: 

Measuring the worth or quality of architectures produced to date is likely to lead to high-

quality architectures because instances of poor performance will be readily identified, which 

will lead to the examination of the causes, and eventually to remediation and improvement. 

The principles relating effective organizational coordination and organizational learning to high-

quality architectures are also apparent. These principles amount to prescriptions. Highly compe-

tent individuals, teams, and organizations will observably exhibit aspects that (the models posit) 

will lead to high-quality architectures.  

6.3 COVERAGE PROVIDED BY THE MODELS 

How well do the four models serve us when we consider their use in an evaluation instrument? 

One way to judge this is by plotting the coverage they bring to the problem. At least three kinds of 

coverage are important. The first is coverage of the kinds of artifacts that can be observed and 

evaluated. The second is whether the model applies well to individuals, teams, or whole organiza-

tions. The third is whether the models tell us to examine past performance or present activity. 

Coverage of observables is described below:  

1. There are artifacts that the subject has produced. These can be architectures as represented 

by models or documents. They can also be systems that can be seen to run, or that can be 

represented by source code listings.  

2. There are processes that the subject carries out. Processes can be observed to see what the 

steps are, how well each step is executed, and whether tools and technology are effectively 

employed.  

3. There is the organization itself. The organization’s structures, interactions, and coordination 

can be observed. 

Each of the four models will lead us to observe one, two, or all three of these things with more or 

less emphasis. As Table 5 illustrates,
11

 together the four models cover the three categories well, 

with each category having at least one model that pays it the most attention.  

 
11

  The table covers artifacts—meaning architectures—processes, and organizations. This description of coverage 

types closely tracks the Philips Research BAPO model, where B  stands for business concerns, and A, P, and 

O are as formulated here [America 2003]. Where do our models stand with respect to business concerns? That 

is, should Table 5 have an extra column showing business as an element of coverage by the models? We do 

address business concerns; producing systems aligned with business goals is how we define a high-quality ar-

chitecture. Our evaluation instrument will assess and improve A, P, and O to predict and control architecture 

competence. We will only be concerned with how A, P, and O interact with B; we do not strive to assess or im-

prove B as a means to predict and control competence. 



40 | CMU/SEI-2008-TR-006 

Table 5: Priority Each Model Assigns to Observing Artifacts, Process, and Organization 

Model 

 

Artifacts Process (including  

enabling tools and  

technology) 

Organization 

DSK model Tertiary. For example, archi-

tecture documents may be 

observed to infer how well 

the duty of documentation 

was carried out.  

Primary. Examines duties of 

architects and architecting 

organizations. 

Secondary. Some organiza-

tional duties involve coordina-

tion and institutionalization of 

information, such as reposito-

ries of past designs and arti-

facts. 

HPT model Primary. Architectures and 

systems are examined for 

their ―worth‖ and alignment 

to business goals. 

Secondary. Steps in the 

process can correlate to 

task-level accomplishments 

and areas to target for im-

provement strategies. 

Tertiary. Evaluating worth or 

value of output depends on 

measuring against the goals of 

the appropriate part of the 

organization.  

Organizational 

Learning  

model 

Secondary. Some learning 

artifacts amount to reposito-

ries of learned knowledge. 

Secondary. Some learning 

results from the way that 

processes are carried out. 

Primary. Emphasis is on how 

organizations take in, retain, 

and utilize knowledge. 

Organizational 

Coordination  

model 

Secondary. Some coordina-

tion (or lack of it) manifests 

itself in the quality of the 

artifacts. 

Secondary. Some coordina-

tion mechanisms may be 

embodied in processes. 

Primary. Emphasis is on what 

coordination activities are 

caused by particular architec-

tural decisions 

 

Coverage of individuals, teams, and organizations: Table 6 rates the models in terms of how 

well each one applies to individual competence, the competence of teams, and the competence of 

organizations. A ―+++‖ means the model is very applicable, and a ―+‖ means it is somewhat ap-

plicable. 

Table 6: Applicability of the Models to Individuals, Teams, and Organizations 

Model Applicability to  

individuals 

Applicability to  

teams 

Applicability to  

organizations 

Duties, Skills, Knowledge +++ ++ + 

Human Performance 

Technology 

+++ +++ +++ 

Organizational Coordination + ++ +++ 

Organizational Learning ++ ++ +++ 

 

Coverage of past performance and present activity: The HPT model clearly tells us to evaluate 

past performance. The DSK model clearly tells us to evaluate present activity. The other two 

models suggest some of each. Both learning and coordination can be evaluated by examining the 

observable model processes as well as the results of carrying them out. 



 

 SOFTWARE ENGINEERING INSTITUTE | 41 

We found that together the four models provide strong coverage across these important dimen-

sions, giving us confidence that they are effective choices for informing an evaluation instrument. 

We turn to that in the next section. 

 



42 | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 43 

7 Building an Assessment Instrument 

In this chapter we describe and exemplify the process of building an instrument for assessing ar-

chitecture competence based upon the four models that were described in Chapters 2-5. We will 

not present a fully fleshed-out instrument here, for three reasons: 1) Examining such an instru-

ment would involve long and relatively tedious reading; 2) The instrument is not simply a check-

list where one runs through every question. It is created as a structured interview where a positive 

answer might simply cause the interviewer to proceed to the next category of questions, and a 

negative answer might cause the interviewer to probe more deeply to recursively unveil new sets 

of questions; and 3) The instrument is not yet complete.  

We will present the rationale for creating an assessment instrument for architecture competence, a 

set of questions that we developed during our consideration of the four models, as well as exam-

ples of the relationships between questions. We will also show how one question/answer pair 

might lead to others. 

7.1 ASSESSMENT OUTCOMES 

What are some potential outcomes from an assessment? We envision at least three sets of out-

comes from assessments of architecture competence, based on who is doing the assessment, who 

is being assessed, and the goals of the assessment:  

 There are outcomes relevant to an acquisition organization: such an organization can use an 

assessment of architecture competence to assess a contractor in much the same way that it 

might scrutinize a contractor with respect to its SEI Capability Maturity Model
®
 Integration 

(CMMI ) level [Garcia 2007], or to make a choice among competing bids. All other things 

being equal, an acquiring organization would prefer a contractor with a higher level of archi-

tecture competence, since this typically means fewer future problems and less reworking 

[Boehm 2007]. An acquisition organization might assess the contractors directly, or hire a 

third party to do the assessment. 

 There are outcomes relevant to service organizations: such organizations might be motivated 

to maintain, measure, and advertise their architecture competence as a means of attracting and 

retaining customers. They might typically rely on outside organizations to assess their level of 

competence in an objective fashion. 

 Finally there are outcomes that are relevant to development organizations: these organiza-

tions would be doubly motivated to assess, monitor, and, over time, increase their levels of 

architecture competence. This would 1) aid in advertising the quality of their products, and   

2) aid in their internal productivity and predictability. In these ways, their motivations align 

with those of service organizations. Businesses regularly assess their own performance in var-

 
®

 Capability Maturity Model and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie  

Mellon University. 



44 | CMU/SEI-2008-TR-006 

ious areas—technical, fiscal, and operational (for example, consider the widespread use of 

multi-criteria techniques such as the Balanced Scorecard or Business/IT alignment in industry 

[Kaplan 1996, Luftman 1993]). Reasons for these assessments. include determining whether 

they are meeting industry norms and gauging their progress over time in meeting busi-

ness/organizational goals. 

7.2 THE FOUNDATIONS AND STRUCTURE OF THE INSTRUMENT 

To create the assessment instrument, we have taken both top-down and bottom-up approaches. 

Top-down, we have generated questions from a knowledge of the place of architecture in the 

software development and system development life cycles. For example, we know that architec-

tures are critically influenced by quality attribute requirements, so questions in the instrument 

must probe the extent to which the architect
12

 elicits, captures, and analyzes such requirements. 

Bottom-up, we have worked from the specific duties, skills, and knowledge in the DSK model, 

and from the components of the organizational learning, organizational coordination, and human 

performance models. In the bottom-up approach, we examine each category in the models and 

generate questions that address each component. This approach leads to tremendous overlap, 

which helps to validate and refine the questions in the instrument. 

To take the example introduced above—that of capturing and analyzing quality attribute require-

ments—we have listed below several duties from the DSK model that directly speak to this issue: 

 Capture customer, organizational, and business requirements for the architecture. 

 Articulate, refine, and document architectural requirements, ensuring that they meet the com-

pany’s needs. 

 Work with designers, technologists, and researchers to ensure that the user interface reflects 

client, user, and design requirements. 

 Advise the project manager on the tradeoffs between software design choices and require-

ments choices. 

 Reevaluate the architecture for implementing use cases and other requirements such as per-

formance and scalability. 

In addition to this list, we consider questions from the other models. From Gilbert’s Human Per-

formance Technology model we consider quality attribute requirements from three dimensions: 

quality (accuracy, class, and novelty), quantity (rate, timeliness, and volume), and cost. This gene-

rates questions about the accuracy of the volume and of quality attribute requirements captured, 

and the cost of doing so. For example, we might ask how many quality attribute requirements the 

architect collects, how the architect knows that this number is enough, how quickly the informa-

tion is collected, and/or how much the requirement elicitation/validation costs. We might also ask 

questions about whether the collected quality attribute requirements were novel—did they add 

value and insight to the project? And we might ask about the class of the collected quality 

attribute requirements—Is it a factor that contributes to the value of the end product? 

 
12

  Whenever we speak of the architect in this report, we are referring to an architecture team. We see both indi-

vidual architects and teams, depending on the cooperating organization and the size of the project. 



 

 SOFTWARE ENGINEERING INSTITUTE | 45 

Having generated and validated a large number of questions from the four models, we must then 

structure the questions, since the assessment instrument is delivered as a series of interviews. We 

are building a flowchart-style assessment instrument: Each question may lead to other questions 

that further probe a particular area.  

7.3 SAMPLE QUESTIONS 

As described in the previous section, we have generated questions from many sources. Some are 

related to duties, some are related to architecture groups, some are related to a consideration of the 

different roles in an organization (architect, manager, programmer, etc.), and so forth. 

Whenever we pose a question in the assessment instrument, there are a number of meta-questions 

that automatically accompany it; for example 

 What is your supporting evidence? 

 How sustainable is your answer over time, across different systems, and across different arc-

hitects? (Sustainability can be prosecuted by asking, for example, the following: How repeat-

able is this with a different architect? What knowledge is embedded in your processes, tools, 

and so forth, that needs to be consistently manifested by different architects? How would you 

nurture your next super-architect?) 

With these meta-questions in mind, we now turn to a sample set of questions drawn from the four 

models. For each model we will describe the source of the question, the question itself, and sub-

questions/probing questions that follow from it. 

Questions Based on Duties 

Duty: Creating an architecture 

Question: How do you create an architecture? 

 How do you ensure that the architecture is aligned with the business goals? 

 What is the input into the architecture-creation process? What inputs are provided to the arc-

hitect(s)?  

 How does the architect validate the information provided? What does the architect do in case 

the input is insufficient/inadequate? 

Duty: Architecture evaluation and analysis 

Question: How do you evaluate and analyze an architecture? 

 Are evaluations part of the normal software development life cycle, or are they done when 

problems are encountered?  

 Is the evaluation incremental or ―big bang?‖ How is the timing determined? 

 Does the evaluation include an explicit activity relating architecture to business goals? 



46 | CMU/SEI-2008-TR-006 

 What are the inputs to the evaluation? How are they validated? 

 What are the outputs from an evaluation? How are the outputs of the evaluation utilized? Are 

the outputs differentiated according to impact or importance? How are the outputs validated? 

Who is informed of what outputs? 

Duty: Life-cycle phases: Testing 

Question: How does your architecture facilitate testing? 

 Do you have specific architectural facilities to aid in fault detection, recording, playback, in-

sertion, and so forth? 

 Do you define any test cases based on the architecture? 

Questions Based on Knowledge 

Knowledge: Architecture concepts 

Question: How does your organization ensure that its architects have adequate architectural know-

ledge? 

 How are architects trained in general knowledge of architecture? 

 How do architects learn about architectural frameworks, patterns, styles, standards, documen-

tation notations, and architecture description languages? 

 How do architects learn about new or emerging architectural technologies (e.g., model-driven 

architecture)?  

 How do architects learn about analysis and evaluation techniques and methods? 

 How do architects learn quality-attribute-specific knowledge, such as techniques for analyz-

ing and managing reliability, performance, maintainability, and security? 

 How are architects tested to ensure that their knowledge levels are adequate, and remain ade-

quate, for the tasks that they face? 

Questions Based on the Organizational Coordination Model 

Question: How is the architecture designed with distribution of work to teams in mind? 

 How available is the architecture?  How broadly is it shared with various teams? 

 How do you manage the evolution of architecture during development? 

 Is the work assigned to the teams before or after the architecture is defined, and with due con-

sideration of the architectural structure? 

Question: What domain knowledge exists on the various teams?  

 How is this knowledge captured and shared? 

Question: Are the aspects of the architecture that will require significant inter-team coordination 

supported by the organization’s coordination/communication infrastructure? 



 

 SOFTWARE ENGINEERING INSTITUTE | 47 

 Do you colocate teams with high coordination? Do you at least put them in the same time 

zone?  

 Must all coordination go through the architecture team? 

Questions Based on the Human Performance Technology Model 

Question: Do you track how much the architecture effort costs, and how it impacts overall project 

cost and schedule? 

Question: Do you track the ―worth‖ of the architecture and the benefits, such as stakeholder satis-

faction, quality, repeat business, and bug reports? 

Questions Based on the Organizational Learning Model 

Question: How do you capture and share experiences, lessons learned, technological decisions, 

techniques and methods, and knowledge about available tools? 

 Do you use any knowledge management tools? 

 Is architectural knowledge embedded in your processes? 

 Where is the information about ―who knows what‖ captured, and how is this information 

maintained? 

 How complete and up-to-date is your architecture documentation? How widely disseminated 

is it? 

Question: Are architects actively taught, encouraged, and mentored? 

 How are new team members brought up to speed on the architecture? How long does this typ-

ically take? 

 Do you use reviews to learn from successes and failures? 

 Are team members free to, and encouraged to, express their views? 

7.4 REFLECTIONS ON THE INSTRUMENT QUESTIONS 

What we have presented here is just a small selection of questions evoked by the four models that 

we are using to understand architecture competence. Even in a small sample, we already see sev-

eral interesting results. First, there is a fairly straightforward mapping from the elements of the 

models to questions. Given that there is a duty called ―documentation,‖ we expect to see one or 

more questions related to documentation.  

But in addition to this straightforward mapping from the models to the questions, we can see that 

the intersection of the models and the combination of bottom-up and top-down approaches work 

to both flesh out and validate the questions. For example, we not only get questions on documen-

tation coming from the duties, but we also get documentation questions coming from the Organi-



48 | CMU/SEI-2008-TR-006 

zational Learning model. In that model, we are concerned with how information is collected and 

shared, and this naturally leads to a question concerning documentation.  

There is still a considerable amount of structuring required to turn this set of questions into a doc-

ument that will guide a competence assessment interview. But the foundations for an assessment 

instrument have been laid, as we have shown, by delving into our four models of competence. 

  



 

 SOFTWARE ENGINEERING INSTITUTE | 49 

8 Summary 

We’ve presented an approach for evaluating and improving the architecture competence of indi-

viduals or organizations. The approach is based upon our mining of four models that have shown 

relevance to the area of architecture competence. For each we have shown how the model can be 

used to evaluate the competence of an individual or an architecture-producing organization, and 

how the model might be used as the basis for competence improvement. Finally, we have shown 

how the models lend themselves straightforwardly to the production of an architecture compe-

tence evaluation instrument. The instrument is based on the principles and observational require-

ments implied by each of the models.  

Together the four models provide strong coverage in a number of ways. They provide a basis for 

measuring past performance as well as current activity. They cover the range of observational 

possibilities: artifacts, processes, people, and organizations. Finally, they apply well as a group to 

individuals, teams, and organizations. This coverage gives us confidence that the four models to-

gether will produce valuable and reliable results. 

8.1 NEXT STEPS 

Specific next steps include the following: 

1. Survey practicing architects. Appendix A shows a survey form that we have circulated 

(and continue to circulate) among various architect communities. The survey will add to our 

understanding of important duties, skills, and knowledge, and also tell us ways in which an 

organization can improve its competence. We also need to determine how the data will be 

analyzed and how the results of that analysis will be expressed. 

2. Pursue the DSK model in more depth. After we refine the DSK model, a valuable exercise 

would be to repeat the community survey and compare the results for consistency. Also, 

more in-depth analysis could be used to investigate the following questions: 

a. Are there duties that are considered essential? 

b. What are the most important or critical skills? 

c. What is critical knowledge? Which is domain dependent? Which is domain specific? 

d. Do DSK models vary by geographical region? 

e. Are particular DSK models more closely associated with evolving architectures than 

with building a system from scratch? 

f. Do architects in larger organizations have different DSK models than those in smaller 

organizations? 

g. Do architects of relatively large systems have different DSK models than those of rela-

tively small systems? 



50 | CMU/SEI-2008-TR-006 

h. How much do DSK models reflect conceptual (timeless) knowledge, as opposed to 

knowledge of specific tools, methods and techniques currently in vogue? 

3. Investigate the importance of “experience” in an architecture staff. For example, is an 

organization with a smattering of highly experienced people in any sense more competent 

than one without it? 

4. Account for different kinds of software organizations. An architect at a major IT service 

organization was once heard to say, ―My biggest architectural decision is whether we choose 

SAP or Oracle.‖ The competence required to make that decision may be quite different from 

the competence required to architect a real-time embedded military command and control 

system. To generalize, there are different kinds of organization/architecture relationships. 

There are end-user organizations that buy software (imbued with architecture) and use it, and 

they need the competence to recognize good (or bad) architectures and react accordingly dur-

ing procurement or acquisition. There are supplier organizations that produce products for 

end-user organizations, and they need architecture competence to produce high-quality archi-

tectures for their products. Finally, there are technology platform organizations that build 

technology platforms or other software ―commodity‖ software products, and they need a re-

lated but different kind of architecture competence. The supplier organization in the middle 

is an ―end-user‖ organization of the product/platform/technology organization. Different 

architects evaluate those products and then produce their own products, and as a result dif-

ferent competences are needed. Figure 9 depicts this situation. 

 

  

Figure 9: “Acquiring Architects” in One Kind of Organization Interact with “Producing Architects” in  

Another  

 

5. Establish the relationship between this work and the CMMI approach. The CMMI ap-

proach sets out broad categories for an engineering process, but does not provide much tech-

nical detail about how to carry out each process. In any case, our work has a decidedly archi-

tecture-centric focus, which CMMI does not emphasize. We view this work as complement-

ing CMMI. Whereas CMMI concentrates more on providing general process requirements 

for various topics, we see ourselves as providing specific strategies for architectural meas-

ures, capabilities, and improvement strategies. In the long term, we would like to pilot our 

measurement and improvement approaches in high-maturity organizations to see if any fa-

vorable changes can be observed. 



 

 SOFTWARE ENGINEERING INSTITUTE | 51 

6. Write a case study of a competence-improving organization. Some organizations have 

very well-defined competence programs for their architects now. Other companies have in-

troduced competence-enhancing activities even if they do not use that term. A case study that 

illustrates how competence activities are introduced and matured could help other organiza-

tions adopt similar approaches. 

8.2 CONCLUSION 

As a last word, this work has historical precedence. Pritchard writes compellingly how France 

became a world-class naval power only after elevating the profession of (what we would call) 

naval architect to a highly visible position with a rich body of institutionalized knowledge and 

education [Pritchard 1987]. We believe that, within software engineering, the field of architecture 

is no less strategically important. Our work is about helping architects do what they do better. We 

expect this to pay rich dividends. 



52 | CMU/SEI-2008-TR-006 

 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 53 

Appendix A: Survey of Practicing Architects 

 

Purpose: The Carnegie Mellon Software Engineering Institute is conducting a survey of 

software architects, as part of a project dealing with understanding and improving software 

architecture competence.  For more information, visit 

www.sei.cmu.edu/architecture/competence.html.   

 

Survey guidelines:  Your participation is completely voluntary.  There will be no financial or 

other benefits from participating, other than our thanks and knowing that you are helping fur-

ther the study of the field.   Your responses will be kept confidential and not be used outside 

of Carnegie Mellon University in any way that can identify you personally.   

 

Instructions:  Type your answers in the indicated fields.  Click on the radio buttons to record 

multiple-choice answers.  If you are a consultant, try to answer organization questions using 

the typical or most important organization for which you provide architecture services. 

 

When you have completed the survey, please return it by email to cle-

ments@sei.cmu.edu. 

 

 About you 

 

A1. Your name [optional]       

A2. Are you currently an active software architect?  Yes           No 

A3. What is your job title?       

A4. On how many projects have you acted (a) as chief soft-

ware architect?  (b) as non-chief software architect?  (c) as 

architecture consultant to a project? 

(a) Chief:         

(b) Non-chief:        

(c) Consultant:      

A5. How many years experience do you have (a) as a software 

architect? (b) as a software professional? 

(a) Architect:       

(b) Professional:       

http://www.sei.cmu.edu/architecture/competence.html
mailto:clements@sei.cmu.edu
mailto:clements@sei.cmu.edu


54 | CMU/SEI-2008-TR-006 

A6. What is the size of projects in which you’ve acted as  

architect or architectural consultant?  Use whatever measure-

ment scale you wish.  You may give an average or typical 

size, a range of sizes, or a list of sizes. 

      

A7. How long do you typically spend on projects for which 

you act as architect or architectural consultant?   Try to cite 

milestones (e.g., from contract proposal to first release) to de-

scribe the duration of your involvement. 

      

A8. In what city and country do you do most of your  

architecture work?    

City:       

Country:       

A9. For what company or organization do you work?  If you 

can, give the name of the division or department if applicable.  

      

A10. Please list any quality methods your organization uses 

that apply to software. For each method, indicate the results of 

any evaluation of its use of the method (e.g., CMMI, indepen-

dently assessed, staged Level 2; or ISO-9001, certified by an 

internal auditor). 

      

 



 

 SOFTWARE ENGINEERING INSTITUTE | 55 

 B. About your organization’s architectural practices 

 

B1. How important are the  

following activities for a software 

development organization to 

achieve high competence in soft-

ware architecture? 

 

B2.  How well does your 

organization carry out these  

activities now? 

How important are these 

activities to architecture 

competence? 

  1 = Unimportant 

  2 = Not very important 

  3 = Fairly important 

  4 = Very important 

  ? = Not sure 

How well are these  

currently practiced by  

your organization? 

0 = not done at all  

1 = done poorly 

2 = done moderately well 

3 = done very well 

? = I don’t know 

a. Hire talented architects. 
1  2  3  4  ?  0  1   2   3   ?  

b. Establish a career track for  

architects. 
1  2  3  4  ?  0  1   2   3   ?  

c. Make the position of architect 

highly regarded through visi-

bility, reward, and prestige. 
1  2  3  4  ?  0  1   2   3   ?  

d. Establish a clear statement of  

responsibilities and authority 

for architects.  
1  2  3  4  ?  0  1   2   3   ?  

e. Establish a mentoring pro-

gram for architects. 
1  2  3  4  ?  0  1   2   3   ?  

f. Establish an architecture train-

ing and education program.   
1  2  3  4  ?  0  1   2   3   ?  

g. Track how architects spend 

their time. 
1  2  3  4  ?  0  1   2   3   ?  

h. Establish an architect  

certification program. 
1  2  3  4  ?  0  1   2   3   ?  

i. Have architects receive exter-

nal architect certifications. 
1  2  3  4  ?  0  1   2   3   ?  

j. Measure architects’  

performance. 
1  2  3  4  ?  0  1   2   3   ?  

k. Establish a forum for archi-

tects to communicate, and 

share information and  

experience. 

1  2  3  4  ?  0  1   2   3   ?  

l. Establish a repository of  

reusable architectures and  

architecture-based artifacts. 
1  2  3  4  ?  0  1   2   3   ?  

m. Develop reusable reference  

architectures. 
1  2  3  4  ?  0  1   2   3   ?  

n. Establish organization-wide  

architecture practices. 
1  2  3  4  ?  0  1   2   3   ?  

o. Establish an architecture  

review board. 
1  2  3  4  ?  0  1   2   3   ?  



56 | CMU/SEI-2008-TR-006 

 

p. Measure quality of  

architectures produced. 
1  2  3  4  ?  0  1   2   3   ?  

q. Provide a centralized resource 

to analyze and help with  

architecture tools. 
1  2  3  4  ?  0  1   2   3   ?  

r. Hold an organization-wide 

architecture conference. 
1  2  3  4  ?  0  1   2   3   ?  

s. Initiate software process 

improvement or software  

quality improvement practices. 
1  2  3  4  ?  0  1   2   3   ?  

t. Have architects join  

professional organizations. 
1  2  3  4  ?  0  1   2   3   ?  

u. Bring in outside expert  

consultants on architecture. 
1  2  3  4  ?  0  1   2   3   ?  

v. Include architecture milestones 

in project plans. 
1  2  3  4  ?  0  1   2   3   ?  

w. Have architect provide input 

into product definition. 
1  2  3  4  ?  0  1   2   3   ?  

x. Have architect advise on  

development team structure. 
1  2  3  4  ?  0  1   2   3   ?  

y. Give architect influence 

throughout entire project life 

cycle. 
1  2  3  4  ?  0  1   2   3   ?  

z. Reward/penalize architect 

based on project success. 
1  2  3  4  ?  0  1   2   3   ?  

aa. Other (specify):       
1  2  3  4  ?  0  1   2   3   ?  

bb. Other (specify):       
1  2  3  4  ?  0  1   2   3   ?  

cc. Other (specify):       
1  2  3  4  ?  0  1   2   3   ?  

dd. Other (specify):       
1  2  3  4  ?  0  1   2   3   ?  

ee. Other (specify):       
1  2  3  4  ?  0  1   2   3   ?  

 

Notes, comments, or elaboration (optional):      



 

 SOFTWARE ENGINEERING INSTITUTE | 57 

C. About your duties, skills, and knowledge as a software architect 

 

C1. What are your 

5-8 most important 

duties as a software 

architect?   

What percentage of 

your time does each 

one take?  (The 

times need not total 

100%.) 

Duty % time 

a.       a.   

  

  b.       b.   

  

  c.       c.   

  

  d.       d.   

  

  e.       e.   

  

  f.       f.   

  

  g.       g.   

  

  h.       h.   

  

  
C2. What are the  

5-8 personal skills 

that you find most 

valuable as a soft-

ware architect?   

a.       

b.       

c.       

d.       

e.       

f.       

g.       

h.       

C3. What are the  

5-8 areas of  

technical knowledge 

that you find most 

valuable as a  

software architect?   

a.       

b.       

c.       

d.       

e.       

f.       

g.       

h.       

C4.  Ideally, what percent of time should a software architect spend actually working di-

rectly on the architecture?               

C5.  In your role as software architect, what percentage of your time do you actually spend 

working directly on the architecture?           

 



58 | CMU/SEI-2008-TR-006 

 

D. Assessing competence 

 

D1. On a scale of 1 (very low) to 10 (very high), how would 

you rate the architecture competence of your organization? 

      

D2. On a scale of 1 (very low) to 10 (very high), how would 

your rate your own competence as a software architect? 

      

D3. How does your organization define or measure over-

all success? 

      

D4. On a scale of 1 (very low) to 10 (very high), rate 

your organization’s overall success. 

      

 

D5. In your opinion, does your organization’s work on 

software architecture have an effect on: 

-2 = strong negative effect  

-1 = somewhat negative effect 

 0 = no effect 

 1 = somewhat positive effect 

 2 = strong positive effect 

 ? = don’t know or not sure 

a. overall product quality -2   -1   0   1   2   ?   

b. time to market or deployment -2   -1   0   1   2   ?  

c. ability to derive new products from existing ones -2   -1   0   1   2   ?  

d. cost of products -2   -1   0   1   2   ?  

e. productivity of software development staff -2   -1   0   1   2   ?  

f. level of software expertise of the technical staff -2   -1   0   1   2   ?  

g. effective project planning -2   -1   0   1   2   ?  

h. handling impact of changes to software and hardware -2   -1   0   1   2   ?  

i. other (specify)        -2   -1   0   1   2   ?  

j. other (specify)        -2   -1   0   1   2   ?  

k. other (specify)       -2   -1   0   1   2   ?  

l. other (specify)        -2   -1   0   1   2   ?  

 

Notes, comments, or elaboration (optional):       



 

 SOFTWARE ENGINEERING INSTITUTE | 59 

 

E. About this survey 

 

E1. If we have questions about your responses, may we contact 

you? 

 Yes    No 

E2. Would you be willing to participate in other surveys of about 

the same length related to architecture competence? 

 Yes    No 

E3. If the answer to E1 or E2 is “yes,” please 

enter your preferred email address. 

      

E4. Approximately how many minutes did it 

take you to complete the survey? 

  0-20                        21-30    

31-40            More than 40  

E5. Is there anything else you’d like to tell us?       

 

Thank you very much for your participation.  If you have questions or concerns about 

the survey, please send email to clements@sei.cmu.edu. 

 

Please return this survey by email to clements@sei.cmu.edu.  

 

 

mailto:clements@sei.cmu.edu
mailto:clements@sei.cmu.edu


60 | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 61 

Appendix B: Complete List of Duties, Skills, and Knowledge 

The following tables contain the complete set of duties, skills, and knowledge collected during 

our information-gathering activity described in Section 2. The data is clustered into groups (lef-

thand column) and subgroups (middle column) as the result of an affinity exercise. 

 

Table 7: Duties of a Software Architect 

General Duty 

Area 

Specific Duty 

Area 

Duties 

Architecting Creating an  

architecture 

Creating/designing an architecture. Choose an architecture. Create software 

architecture design plan. Based on an analysis of the given requirements, 

draw the initial architecture. Build product line architecture. Create architec-

tural-level designs depicting the domain characteristics. Defining the product 

architecture. Make design decisions. Expand detail and refine design to 

converge on final design. Identifying the style and articulating the principles 

and key mechanisms of the architecture partitioning the system. Follow the 

scenarios patterns. Define how the various components fit together. Applies 

design patterns and uses UML tools. 

Architecture 

evaluation and 

analysis 

Re-evaluate the architecture for implementing use cases & other require-

ments such as performance, scalability etc. Create prototypes. Participating 

in design reviews. Review construction-level designs. Review the Designs 

of the components designed by junior engineers. Reviewing designs for 

compliance with the architecture. Compare software architecture evaluation 

techniques. Apply value-based architecting techniques to evaluate architec-

tural decisions. Modeling alternatives. Evaluating the architecture through 

various means including prototyping, reviews, and assessments. Analyzing 

and validating the architecture. Refine the architecture by integrating several 

principles. Identify the need and modify the technical architecture to ac-

commodate project needs. Check requirements constraints, and refine the 

architecture accordingly. Review other people’s architecture. Tradeoff anal-

ysis. Analyze styles product factors. Analysis of software architectural pat-

terns. Experiment/simulate (analysis of the software under development). 

Analyze and implement architectural framework. Responsibility to take a 

series of views and a wider perspective on the system design. 

Documentation Thoroughly understand and document the areas (domains) for which the 

system will be built. Prepare architectural documents and presentations. 

Document software interfaces. Produce a comprehensive documentation 

package for architecture useful to stakeholders. Keeping reader’s point of 

view in mind while documenting. Creating, standardizing and using architec-

tural descriptions. Use a certain documentation standard. Document varia-

bility and dynamism. Create conceptual architectural view. Create blue-

prints. Maintain architectural documentation.  

Existing system 

and  

transformation 

Take care of existing system and its architecture. Understand the existing 

architectures & redesign it for migration to new technology & platforms. 

Transforming legacy architecture for present use. Reconstructing software 

architectures/reuse architecture. 



62 | CMU/SEI-2008-TR-006 

Table 7:  Duties of a Software Architect, cont’d. 

General Duty 

Area 

Specific Duty 

Area 

Duties 

Architecting 

(cont’d.) 

Other  

architecting 

duties not  

specific to  

the above  

categories 

Sell the vision, keep the vision alive. Participating in all product design 

meetings. Specialist technical advice on architecture, design n develop-

ment. Provides architectural guidelines for all software design activities. 

Take a system viewpoint. Lead software process/architecture improvement 

activities. Identify and define the set of architectural scopes. Take overall 

responsibility of the architecture. Discover architecture principles that let the 

architecture meet its goals. Define philosophy and principles for global ar-

chitecture. Overseeing and/or managing the architecture definition process. 

Focus on the big picture. Provide architecture oversight of software devel-

opment projects. Using quality attributes. 

Life-cycle 

phases  

other than  

architecture 

Requirements Analyze software requirements. Understanding business and customer 

needs. Capture customer, organizational and Business requirements on the 

architecture. Create software specifications from business requirements. 

Articulating and refining architectural requirements. Ensure that the re-

quirements meet the company’s needs. Listen to understand the scope of 

the project, the client's key design points, requirements, and expectations. 

Understanding the quality attributes. Assess the totality of the client’s needs 

and resources before construction even begins. Document the defined re-

quirements. Setting system scope (is/not; now/later). To set the functional 

path of how the system operates. The desired behaviors of the system are 

outlined. Getting input on needs to evolve and improve the architecture.  

Coding Coding. Conducts code reviews. Develops reusable software components. 

Analyses, selects and integrates software components. Setting and ensur-

ing adherence to coding guidelines. Recommending development metho-

dologies and coding standards. Monitors, mentors and reviews the work of 

outside consultants and vendors. Handle the change-modifying of the code. 

Participation in the development of software components.  

Testing Support field testing. Supports system testers. Responsible for bug-fixing 

and maintenance. Architecture-based testing. Conducts/supports compo-

nents testing. 

Future  

technologies 

Evaluates and recommends enterprise’s software solutions. Manage the 

introduction of new software solutions. Analyze current IT environment and 

recommend solutions for deficiencies. Work with vendors to represent or-

ganization’s requirements and influence future products. Develop and 

present technical white papers. Perform proof-of-concept of new software 

solutions / technologies. 

Tools and  

technology  

selection 

Selecting key technologies. Technical feasibility studies of new technology 

and architecture. Identifies possible solutions through technology and orga-

nizational management & product changes. Specify required tools and me-

thodologies. Leveraging information technology to best advantage. Tool 

selection: How to find the right tool for the enterprise. Maintains state-of-the-

art knowledge of technologies, planning, design, and analysis methodolo-

gies. Lead discussions about technology standards. Evaluate commercial 

tools and software components from an architectural perspective. Review 

technical solutions at software level. Define development tools to be used. 

Technology trend analysis/roadmaps. Develop internal technical standards 

and contribute to the development of external technical standards.  

 



 

 SOFTWARE ENGINEERING INSTITUTE | 63 

Table 7: Duties of a Software Architect, cont’d. 

General Duty 

Area 

Specific Duty  

Area 

Duties 

Interacting 

with  

stakeholders 

Interacting with 

stakeholders in 

general or 

stakeholders 

other than  

clients or  

developers 

Take and retake the pulse of all critical influencers of the architecture 

project. Works with designers, technologists, and researchers to ensure 

user interface reflects client, user, and design requirements. Maintain me-

dium to high level of visibility across the Product Group. Effective mediator 

between and among software developers, project management, and stake-

holder. Identifying stakeholders and listening to and understanding what 

each wants. Describe to the stakeholders intended architecture through the 

stages of development. Convincing the stakeholders. Communicate, Listen, 

network, influence. Address the concerns of all the stakeholders. Choose 

the set of views that will be most valuable to the architecture's community of 

stakeholders. Interact with business experts to design state of the art sys-

tems. Assess the extent to which the architecture meets the various con-

cerns of its stakeholders. Communicate critical decisions and their impact to 

the respective stakeholders. 

Clients Create a plan along with the client articulating and communicating vision to 

the stakeholders. Be engaged with the client to ensure solution success. 

Guide the client through the construction process. Satisfy business objec-

tives of the client. Convince the client to use the company’s software. Pre-

paring presentations for the clients. Customer interaction. Identifying the 

actual builders of the system. Take care of those who construct the system. 

Developers Understand what the developers want and need from the architecture. Help 

developers see the value of the architecture and understand how to use it 

successfully. Gives them all the details needed. Guide the development 

team in implementing the system, and anticipate/diagnose problems, 

find/develop solutions to those problems. Create and teach tutorials to help 

developers.  

Management Project  

management 

Budgeting and planning. Work in budgetary constraints. Sizing and estima-

tion. Correlation between architecture design methods and project planning 

methods. Mapping architectures to implementations. Migration and risk 

assessment, managing risks. Problems and issues related/risk handling. 

Take care of configuration control. Ensures maintainable software. Create 

development schedules. Support the project by guiding and solving prob-

lems all along the execution cycle. Measure results using quantitative me-

trics and improve both personal results and teams’ productivity. Achieving 

quality. Ensure software quality and conformance with industry and project 

standards. Provide support for applications. Handling resources is to make 

sure that they fully understand the economics. Responsible to bring in state-

of-the art processes covering the development cycle. Plays a central role for 

the successful progression of projects. Improve software development prac-

tices. Identifying and scheduling architectural releases. Define and docu-

ment construction process and sequence. Software architecture implemen-

tation. 

People  

management 

Build ―trusted advisor‖ relationships. Coordinates. Motivate. Advocates. 

Delegating or handing off. Managing resources. Acts as a supervisor. 

 

 



64 | CMU/SEI-2008-TR-006 

Table 7: Duties of a Software Architect, cont’d. 

General Duty 

Area 

Specific Duty  

Area 

Duties 

Management 

(cont’d.) 

Support for 

management 

Provide feedback on appropriateness and difficulty of project. A good con-

nection between software architecture and project management. Advise the 

project manager on the tradeoffs between software design choices and 

requirements choices. Provide input to Software Project Manager in the 

software project planning and estimation process. Serve as a ―bridge‖ be-

tween the technical team and the PM/manager. Interacting with managers.  

Organization 

and business 

related 

Organization  Growing an architecture evaluation capability in your organization. Review 

and contribute to research and development efforts. Perform additional job-

related duties as requested. Strategic role. Participate in the hiring process 

for the team. To give excellent value for the money to your employer. Prod-

uct marketing. Institute and oversee cost-effective software architecture 

design reviews. Instrumental in developing intellectual property. Help the 

organization to invent and transform.  

Business Translate business strategy into technical vision and strategy. Influencing 

business strategy. Understanding and evaluating business processes. 

Clearly understanding the business value of software architecture. Help the 

organization meet its business goals. Understand customer and market 

trends. Participate in automation of business processes. Identify, under-

standing and resolve business issues. Align architecture with the business 

goals & objectives. 

Leadership 

and team 

building 

Technical  

leadership 

Lead a team of architects. Act as a technical leader. Making technical deci-

sions. Decision making-deciding to build or to buy major parts of your sys-

tem architecture. Make decisions.  

Team building Build teams. Building the architecture team and aligning them behind the 

vision. Set team context (vision). Mentor junior architects. Consulting and 

educating the team on the use of the architecture. Maintain morale, both 

within and outside the architecture group. Foster the professional develop-

ment of team members. Systematically checking your views to adopt a team 

methodology that suits your level of comfort. Coach teams of software de-

sign engineers for planning, tracking & completion of work within the agreed 

plan. Mentor and coach staff in the use of software technologies. Works 

both as a leader and an individual contributor. 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 65 

Table 8: Skills of a Software Architect 

General Skill 

Area 

Specific Skill  

Area 

Skills 

Communication 

skills 

Outward Oral and written communication skills. Presentation skills. Can present 

and explain technical information to diverse audiences. Capable of 

transferring knowledge. Convincing skills. 

Communication 

skills in general 

Communication skills. See from and sell to multiple viewpoints. Consult-

ing skills. Negotiation skills. Can understand and express complex top-

ics. 

Inward Listening skills. Approachable. Interviewing.  

Interpersonal 

skills 

Within team Team player. Work effectively with superiors, colleagues and customers. 

Collaborating. Maintains constructive working relationships. Work in a 

diverse team environment. Inspire creative collaboration. Consensus 

building. Balanced participation.  

With other  

people 

Interpersonal skills. Diplomatic. Mentoring. Handles and resolves con-

flict. Should respect people. Committed to others’ success. 

Work skills Leadership Leadership. Decision making skills. Take initiative and is innovative. Self 

motivated and directed. Committed, dedicated, and passionate. Inde-

pendent judgment. Influential. Ambitious. Commands respect. Charis-

matic. 

Effectively  

managing  

workload 

Work well under pressure. Planning skills. Time management skills. 

Priority assessment. Result-oriented. Estimates well. Can support a 

wide range of issues. Can work on multiple complex projects concur-

rently. Effectively prioritize and execute tasks in a high-pressure envi-

ronment. Can work on multiple complex systems concurrently. 

Skills to excel in 

corporate  

environment 

Unflinching passion for quality. Art of Strategy. Work under general 

supervision. Work under given constraints. Organizational and workflow 

skills. Sensitive to where the power is and how it flows in your organiza-

tion. Process-oriented. Political sagacity. Willingness to do what it takes 

to get the job done. Entrepreneurial. Assertive without being aggressive. 

Open to constructive criticism. 

Skills for  

handling  

information 

Detail oriented while maintaining overall vision and focus. See a large 

picture. Good at working at an abstract level.  

Personal skills Personal  

qualities 

Credible. Accountable. Responsible. Insightful. Visionary. Creative. 

Perseverant. Practical. Confident. Patient. Empathetic. Work ethics. 

Skills for  

handling  

unknown 

Tolerant of ambiguity. Risk taking/managing skills. Problem solving 

skills. Reasoning. Analytical skills. 

Skills for  

handling  

unexpected 

Adaptable. Flexible. Open minded. Resilient. Compromising.  

Learning Learning. Good grasping power. Investigative. Observation power. 

Adept in using tools. 

 



66 | CMU/SEI-2008-TR-006 

Table 9: Knowledge of a Software Architect  

General  

Knowledge Area 

Specific  

Knowledge Area 

Specific Knowledge 

Computer science 

knowledge 

Knowledge of 

architecture  

concepts 

Working knowledge of software architecture. Knowledge of architec-

ture frame works. Knowledge of architectural patterns. Knowledge of 

standard architectures. Understanding of system architecture. Know-

ledge of architecting notations. Knowledge of Architecture Description 

Languages (ADL). Knowledge of software architecture view pts and 

styles. Knowledge of architecture description languages. Knowledge 

of emerging technologies like model-driven architecture. Know about 

Innovations and advances in software architecture. Knowledge of 

architecture evaluation models. Knowledge of all components of a 

technical architecture. Architecture techniques. Know about reliability, 

manageability, and maintainability, not to mention security. Knowledge 

of quality models. Software Architecture concepts. 

Knowledge of 

software  

engineering  

Specialized knowledge of software engineering. Basic knowledge of 

software engineering. Knowledge of systems engineering. Knowledge 

of software development life cycle (SDLC). Software process man-

agement and improvement techniques. Knowledge of security, per-

formance, design, maintenance issues. Strong abilities in require-

ments analysis. Strong mathematics background. Development 

methods and modeling techniques. Elicitation techniques. Consulting 

frameworks. Knowledge of component based software development. 

Principles of design and management of product line architectures. 

Reuse methods and techniques. Software product line techniques. 

Documentation experience. Knowledge of testing/debugging tools. 

Troubleshooting. Experience in testing. Product demonstrations and 

product installation experience. Experience of deploying successful 

software projects. 

Design knowledge Technical Solution Design experience. Rooted in years of experience 

dealing with design issues that cut across a variety of technologies. 

Knowledge about different tools and design techniques. Experience of 

designing complex multi-product systems. Knowledge of object-

oriented analysis and design (OOAD). UML diagrams and UML analy-

sis modeling. 

Programming 

knowledge 

Programming Knowledge/experience. Other programming language 

experience. Experience of developing and implementing middleware 

components. Knowledge of how robust software can be built and 

maintained. Implementation experience. Working knowledge of Java. 

Experience in technical development.  

Knowledge of 

technologies and 

platforms 

Specific  

technologies  

and platforms 

Knowledge of computer software. Knowledge of hardware/software 

interfaces. Understanding of web-based applications. Experience with 

Web Services Technologies. Internet technologies. Knowledge of a 

specific software/operating system. Experience in Sun and Microsoft 

platforms. SQL and RDBMS Concepts/ Data Base experience. 

General  

knowledge of 

technologies and 

platforms 

Strong technical breadth and depth. Knowledge of technical analy-

sis/evaluation techniques. Know benefits from having knowledge of 

the technologies. Knowledge about IT industry future directions. Fami-

liarity with the ways in which infrastructure impact an application. 

Know what technical issues are key to success. Needs to have good 

technical judgment. Knowledge about the previous technologies. 



 

 SOFTWARE ENGINEERING INSTITUTE | 67 

Table 9:  Knowledge of a Software Architect (cont.’d) 

General  

Knowledge Area 

Specific 

Knowledge Area      

Specific Knowledge 

Knowledge about 

the organization’s 

context and  

management 

Domain  

knowledge 

Knowledge of different domains. In-depth understanding of the domain 

and pertinent technologies. Specific domain experience (as needed by 

the company). Security domain experience. Experience handling 

projects involving large volumes of data. Experience with real-time 

systems, video systems. Knowledge of data warehousing. 

Industry  

knowledge 

Knowledge of industry’s best practices. Familiarity with Industry stan-

dards. Experience working in onshore/offshore team environment. 

Should be a specialist.  

Enterprise 

knowledge 

Knowledge about the company’s business practices. Your competition 

(products, strategies and processes). A sound sense of business and 

technical strategy. Business re-engineering principles and processes. 

Organization’s business strategy and rationale. What key players 

want, both business and personal. Knowledge of customer segment. 

Sales and/or customer expertise. Strong competitive experience. Cus-

tomer training experience. Know all stakeholders viewpoints and their 

perspectives. Strategic planning experience. Knowledge of financial 

models and budgeting. 

Leadership and 

management 

techniques and 

experience 

Yourself. Leadership experience. Managerial experience. History of 

coaching, mentoring and training software developers. Knowledge of 

project management. Knowledge of project engineering. 

 



68 | CMU/SEI-2008-TR-006 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 69 

Bibliography 

URLs are valid as of the publication date of this document. 

[America 2003] 
America, P.; Obbink, H.; & Rommes, E. “Multi-View Variation Modeling for Scenario Analysis.” 

Proceedings of the Fifth International Workshop on Product Family Engineering (PFE-5). Sien-

na, Italy, 2003, Springer-Verlag, pp. 44-65. 

[American Heritage 2002] 

American Heritage Editors. The American Heritage Stedman’s Medical Dictionary. 

Houghton-Mifflin, 2002. 

[Argote 2007] 
Argote, L. & Todorova, G. International Review of Industrial and Organizational Psycholo-

gy. John Wiley & Sons, Ltd, 2007 (ISBN: 978-0-470-03198-8). 

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470031980,descCd-

tableOfContents.html 

[Batman 2008] 

Batman, Joe. Hunting the Product Line Architecture.  

http://www.sei.cmu.edu/architecture/batman.pdf (2008). 

[Beyer 1998] 

Beyer, H. & Holzblatt, K.  Contextual Design: Defining Customer-Centered Systems. ACM 

Press, 1998 (ISBN 1-558-60411-1).  As cited in Bass, L.; Nord, R.; Wood, W.; & Zubrow, D. 

Risk Themes Discovered Through Architecture (CMU/SEI-2006-TR-012, ADA456884). 

Software Engineering Institute, Carnegie Mellon University, 2006. 

http://www.sei.cmu.edu/publications/documents/06.reports/06tr012.html 

[Binder 2006]  

Binder Riha Associates. The Six Boxes. http://www.sixboxes.com/The_Model.html (2006). 

[Bloom  2004] 

Bloom, Benjamin. Bloom’s Taxonomy, Adapted from Benjamin S. Bloom “Taxonomy of 

Educational Objectives.” Allyn and Bacon, copyright Pearson Education, 1984. 

http://www.coun.uvic.ca/learn/program/hndouts/bloom.html (2004). 

 

[Boehm 2007] 
Boehm, B.; Valerdi, R.; & Honour, E. ―The ROI of Systems Engineering: Some Quantitative 

Results.‖ Proceedings of Seventeenth International Symposium of the International Council 

on Systems Engineering (INCOSE). San Diego, CA, June 2007. INCOSE, 2007. 

http://www.incose.org/symp2007/   

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470031980,descCd-tableOfContents.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470031980,descCd-tableOfContents.html
http://www.sixboxes.com/The_Model.html
http://www.coun.uvic.ca/learn/program/hndouts/bloom.html
http://www.incose.org/symp2007/
http://www.sei.cmu.edu/architecture/batman.pdf
http://www.sei.cmu.edu/publications/documents/06.reports/06tr012.html


70 | CMU/SEI-2008-TR-006 

[Bredemeyer 2007] 
Bredemeyer, Dana. About Dana Bredemeyer. 

http://www.bredemeyer.com/DanaBredemeyer.htm (2007). 

[Cataldo 2007] 
Cataldo, Marcelo; Bass, Matthew; Herbsleb, James D.; & Bass, Len. ―On Coordination Me-

chanisms in Global Software Development,‖ 71-80. International Conference on Global 

Software Engineering (ICGSE 2007). Munich, Germany, Aug. 2007. IEEE, 2007. 

[Clements 2007] 

Clements, Paul; Kazman, Rick; Klein, Mark; Devesh, Divya; Shivani, Reddy; & Verma, Pra-

geti. ―The Duties, Skills, and Knowledge of Software Architects.‖ Sixth Working IEEE/IFIP 

Conference on Software Architecture (WICSA 2007). Mumbai, India, Jan. 2007. IEEE, 2007. 

http://www.gv.psu.edu/WICSA2007/tech.htm 

[Dutton 1984] 
Dutton, J. M. & Thomas, A. ―Treating Progress Functions as a Managerial Opportunity.‖ 

Academy of Management Review 9 (1984): 235-247. 

[Fiol 1985] 
Fiol, C. M. & Lyles, M. A. ―Organizational Learning.‖ Academy of Management Review 10, 

4 (1985): 803.  

[Garcia 2007] 
Garcia, Suzanne & Turner, Richard. CMMI Survival Guide: Just Enough Process Improve-

ment. Addison-Wesley, 2007 (ISBN: 0321422775). 

http://www.sei.cmu.edu/publications/books/process/cmmi-survival-guide.html 

[Gilbert 1978] 

Gilbert, Thomas F. Human Competence-Engineering Worthy Performance: Engineering 

Worthy Performance. McGraw-Hill, 1978. 

[Gilbert 1996] 

Gilbert, Thomas F. Human Competence-Engineering Worthy Performance: Engineering Wor-

thy Performance. International Society for Performance Improvement, 1996 (ISBN: 

0961669012, 978-0961669010).  

[Hamel 1990] 
Hamel, Gary & Prahalad, C. K. The Core Competence of the Corporation (HBR OnPoint En-

hanced Edition). Harvard Business Review, 1990.  

[Hoffman 1999] 
Hoffman, Terrence. ―The Meanings of Competency.‖ Journal of European Industrial Train-

ing 23, 6 (1999): 275-286. 

http://www.bredemeyer.com/DanaBredemeyer.htm
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28cataldo%20%20marcelo%3CIN%3Eau%29&valnm=Cataldo%2C+Marcelo&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20bass%20%20matthew%3CIN%3Eau%29&valnm=+Bass%2C+Matthew&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20herbsleb%20%20james%20d.%3CIN%3Eau%29&valnm=+Herbsleb%2C+James+D.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20bass%20%20len%3CIN%3Eau%29&valnm=+Bass%2C+Len&reqloc%20=others&history=yes
http://www.gv.psu.edu/WICSA2007/tech.htm
http://www.sei.cmu.edu/publications/books/process/cmmi-survival-guide.html


 

 SOFTWARE ENGINEERING INSTITUTE | 71 

[INCOSE 2005] 
International Council on Systems Engineering. Engineering Core Competencies Framework, 

2005. 

http://www.incose.org.uk/Downloads/Core%20Competencies%2021-July-05.pdf 

[Jeffcoat 2005] 
Jeffcoat, Sandra Y. & Yaghoobi, Ahmad R. “System Architect: Necessity, Not Luxury.” 

Perspectives of the IASA 2, 1 (August 2005): 8-10. 

[Kaplan 1996] 
Kaplan, Robert S. & Norton, David P. The Balanced Scorecard: Translating Strategy into 

Action. Harvard Business School Press, 1996 (ISBN: 0875846513, 978-0875846514).  

[Kazman 2005] 
Kazman, Rick & Bass, Len. Categorizing Business Goals for Software Architectures 

(CMU/SEI-2005-TR-021, ADA444917). Software Engineering Institute, Carnegie Mellon 

University, 2005. http://www.sei.cmu.edu/publications/documents/05.reports/05tr021.html  

[Levitt 1988] 

Levitt, Barbara & March, James G. ―Organizational Learning.‖ Annual Review of Sociology 

14, 1 (1988): 319-40. 

[Lewis 2001] 

Lewis, Michael A. ―Success, Failure and Organizational Competence. A Case Study of the 

New Product Development Process.‖ Journal of Engineering and Technology Management 

18, 1 (2001): 185–206. 

[Luftman 1993] 
Luftman, J.; Lewis, P.; & Oldach, S. ―Transforming the Enterprise: The Alignment of Busi-

ness and Information Technology Strategies.‖ IBM Systems Journal 32, 1 (1993): 198-221. 

[McGregor 1967] 
McGregor, Douglas. The Professional Manager. New York, NY: McGraw-Hill Education, 

1967 (ISBN: 0070450935, 978-0070450936). 

[Microsoft 2008] 
Microsoft, Inc. Architecture Resource Center. 

http://www.microsoft.com/architecture/default.aspx?pid=share.certification (2008).  

[Nickols 2007] 
Nickols, Fred. ―McGregor Meets Gilbert.‖ http://home.att.net/~essays/mcgregorgilbert.pdf 

(2007).  

 

[Pritchard 1987] 
Pritchard, James. ―From Shipwright to Naval Constructor: The Professionalization of 18th 

Century French Naval Shipbuilders.‖ Technology and Culture 28, 1 (January 1987). 

http://www.sei.cmu.edu/publications/documents/05.reports/05tr021.html
http://www.incose.org.uk/Downloads/Core%20Competencies%2021-July-05.pdf
http://www.microsoft.com/architecture/default.aspx?pid=share.certification
http://home.att.net/~essays/mcgregorgilbert.pdf


72 | CMU/SEI-2008-TR-006 

[Random House 2006] 

Dictionary.com. Dictionary.com Unabridged (V1.0.1), Based on the Random House Una-

bridged Dictionary. Random House, Inc., 2006. http://dictionary.reference.com/browse 

[SEI 2008] 

Software Engineering Institute. ―Software Architecture for Software-Intensive Systems.‖  

http://www.sei.cmu.edu/architecture/arch_duties.html (2008). 

[Shaw 2006] 
Shaw, Mary & Clements, Paul. The Golden Age of Software Architecture: A Comprehensive 

Survey (CMU-ISRI-06-101). School of Computer Science, Carnegie Mellon University, 

2006. http://www.sei.cmu.edu/architecture/GoldenAgeTR_v6.pdf 

[Taatila 2004] 

Taatila, Vesa. The Concept of Organizational Competence - A Foundational Analysis. Univer-

sity of Jyvaskyla, 2004. http://dissertations.jyu.fi/studcomp/9513917185.pdf 

[Tague 2005] 

Tague, Nancy R. The Quality Toolbox. ASQ Quality Press, 2005 (ISBN: 0873896394). 

http://www.loc.gov/catdir/toc/ecip055/2004029947.html  

[Teodorescu 2004] 

Teodorescu, Tina M. & Binder, Carl. Competence Is What Matters. International Society for 

Performance Improvement (ISPI), 2004. 

http://www.sixboxes.com/Articles/Teodorescu_Binder.pdf 

[Turley 1995] 
Turley, Richard T. & Bieman, James M. ―Competencies of Exceptional and Non-Exceptional 

Software Engineers.‖ Journal of Systems and Software 28, 1 (Jan. 1995): 19-38. 

[van Ommering 2005] 
van Ommering, Rob. ―Things to Do in Denver if You’re an Architect.‖ 2005. 

http://www.sei.cmu.edu/architecture/ThingsToDoInDenver.htm  

 

[Webster 1996] 
Webster New World Dictionary. Webster’s New Universal Unabridged Dictionary. Barnes & 

Noble Books, 1996. 

[WICSA  2007] 

WICSA Conference Wiki. Working IFIP/IEEE Conference on Software Architecture Session: 

Education--Discussions. 

http://wwwp.dnsalias.org/wiki/Session:Education--Discussions (2007). 

[Wikipedia 2007] 

Wikipedia. ―Thomas. F. Gilbert Biography.‖ 2007. 

http://en.wikipedia.org/wiki/Thomas_F_Gilbert 

http://www.sei.cmu.edu/architecture/GoldenAgeTR_v6.pdf
http://www.loc.gov/catdir/toc/ecip055/2004029947.html
http://www.sixboxes.com/Articles/Teodorescu_Binder.pdf
http://en.wikipedia.org/wiki/Thomas_F_Gilbert
http://dictionary.reference.com/browse
http://www.sei.cmu.edu/architecture/arch_duties.html
http://dissertations.jyu.fi/studcomp/9513917185.pdf
http://www.sei.cmu.edu/architecture/ThingsToDoInDenver.htm
http://wwwp.dnsalias.org/wiki/Session:Education--Discussions


 

 SOFTWARE ENGINEERING INSTITUTE | 73 

[Wikipedia 2008] 

Wikipedia. ―Dependency Structure Matrix.‖ 2008. 

http://en.wikipedia.org/wiki/Dependency_Structure_Matrix  

[Woodruffe 1993] 
Woodruffe, Charles ―What Is Meant by a Competency?‖ Leadership & Organization Devel-

opment Journal 14, 1 (1993): 29. 

http://en.wikipedia.org/wiki/Dependency_Structure_Matrix


74 | CMU/SEI-2008-TR-006 

 
 

 

 

 

 

 



 

 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave Blank) 

2. REPORT DATE 

March 2008 

3. REPORT TYPE AND DATES 

COVERED 

Final 

4. TITLE AND SUBTITLE 

Models for Evaluating and Improving Architecture Competence 

5. FUNDING NUMBERS 

FA8721-05-C-0003 

6. AUTHOR(S) 

Len Bass, Paul Clements, Rick Kazman, Mark Klein 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 

Carnegie Mellon University 

Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2008-TR-006 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 

AGENCY REPORT NUMBER 

ESC-TR-2008-006 

11. SUPPLEMENTARY NOTES 

 

12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 

 

13. ABSTRACT (MAXIMUM 200 WORDS) 

Software architecture competence is the ability of an individual or organization to acquire, use, and sustain the skills and knowledge ne-

cessary to carry out software architecture-centric practices. Previous work in architecture has concentrated on its technical aspects: me-

thods and tools for creating, analyzing, and using architecture. However, a different perspective recognizes that these activities are car-

ried out by people working in organizations, and those people and organizations can use assistance towards consistently producing 

high-quality architectures.  

This report lays out the basic concepts of software architecture competence and describes four models for explaining, measuring, and 

improving the architecture competence of an individual or a software-producing organization. The models are based on (1) the duties, 

skills, and knowledge required of a software architect or architecture organization, (2) human performance technology, an engineering 

approach applied to improving the competence of individuals, (3) organizational coordination, the study of how people and units in an 

organization share information, and (4) organizational learning, an approach to how organizations acquire, internalize, and utilize know-

ledge to improve their performance. The report also shows how the four models can be synergistically applied to produce an evaluation 

instrument to measure an organization’s architecture competence. 

14. SUBJECT TERMS 

architecture competence model, DSK model, Duties Skills Knowledge model,  Organizational 

Learning model, Human Performance Technology model, Organizational Coordination model, 

survey of practicing architects 

15. NUMBER OF PAGES 

83 

16. PRICE CODE 

 

17. SECURITY CLASSIFICATION OF 

REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 

OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 

OF ABSTRACT 

Unclassified 

20. LIMITATION OF 

ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 


	Models for Evaluating and Improving Architecture Competence
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 The Duties, Skills, and Knowledge (DSK) Model
	3 The Human Performance Technology Model
	4 The Organizational Coordination Model
	5 The Organizational Learning Model
	6 Considering the Models Together
	7 Building an Assessment Instrument
	8 Summary
	Appendix A: Survey of Practicing Architects
	Appendix B: Complete List of Duties, Skills, and Knowledge
	Bibliography


